publication . Article . Other literature type . 2018

Pharmacokinetics of Snake Venom

Suchaya Sanhajariya; Stephen Duffull; Geoffrey Isbister;
Open Access English
  • Published: 07 Feb 2018 Journal: Toxins, volume 10, issue 2 (eissn: 2072-6651, Copyright policy)
  • Publisher: MDPI
Abstract
Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min...
Subjects
Medical Subject Headings: complex mixtures
free text keywords: Review, snakes, venom, pharmacokinetics, elapid, viper, toxins, This review investigates the current knowledge of snake venom pharmacokinetics. In addition we conducted an exploratory population pharmacokinetic analysis of timed venom concentration data extracted from the literature, which can be used as a prior for the future development of substantial snake venom pharmacokinetic models., Medicine, R, Toxicology, Health, Toxicology and Mutagenesis, Future studies, Pharmacology, Bioavailability, Volume of distribution, Antivenom, Snake venom, Biology, Biochemistry, NONMEM
Funded by
NHMRC| Translational Venom and Antivenom Research
Project
  • Funder: National Health and Medical Research Council (NHMRC) (NHMRC)
  • Project Code: 1110343
  • Funding stream: Centres of Research Excellence
,
NHMRC| Improving health outcomes in drug overdose and envenoming: risk assessment and interventional studies
Project
  • Funder: National Health and Medical Research Council (NHMRC) (NHMRC)
  • Project Code: 1061041
  • Funding stream: Research Fellowships
32 references, page 1 of 3

Warrell, D.A. Guidelines for the Management of Snake-Bites; World Health Organization: Geneva, Switzerland, 5. Warrell, D.A. Snake bite. Lancet 2010, 375, 77-88. [CrossRef] 6. Warrell, D.A.; Gutiérrez, J.M.; Organization, W.H. Rabies and Envenomings: A Neglected Public Health Issue: Report of a Consultative Meeting; World Health Organization: Geneva, Switzerland, 2007.

7. Tasoulis, T.; Isbister, K.G. A review and database of snake venom proteomes. Toxins 2017, 9, 290. [CrossRef] [PubMed] 8. Fry, B.G.; Vidal, N.; van der Weerd, L.; Kochva, E.; Renjifo, C. Evolution and diversification of the toxicofera reptile venom system. J. Proteom. 2009, 72, 127-136. [CrossRef] [PubMed] 9. Vidal, N. Colubroid systematics: Evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J. Toxicol. Toxin Rev. 2002, 21, 21-41. [CrossRef] 10. Bieber, A.L. Metal and nonprotein constituents in snake venoms. In Snake Venoms; Lee, C.-Y., Ed.; Springer: Berlin, Heidelberg, 1979; pp. 295-306. [OpenAIRE]

11. Bon, C. Pharmacokinetics of venom toxins and their modification by antivenom therapy. J. Toxicol. Toxin Rev.

2003, 22, 129-138. [CrossRef] 12. Chippaux, J.P.; Williams, V.; White, J. Snake venom variability: Methods of study, results and interpretation.

Toxicon 1991, 29, 1279-1303. [CrossRef] 13. Isbister, G.K.; Brown, S.G.A.; Page, C.B.; McCoubrie, D.L.; Greene, S.L.; Buckley, N.A. Snakebite in australia: A practical approach to diagnosis and treatment. Med. J. Aust. 2013, 199, 763-768. [CrossRef] [PubMed] 14. Mehta, S.R.; Sashindran, V.K. Clinical features and management of snake bite. Med. J. Armed Forces India 2002, 58, 247-249. [CrossRef] 15. Gasanov, S.E.; Dagda, R.K.; Rael, E.D. Snake venom cytotoxins, phospholipase A2s, and Zn2+-dependent metalloproteinases: Mechanisms of action and pharmacological relevance. J. Clin. Toxicol. 2014, 4, 1000181. [OpenAIRE]

[CrossRef] [PubMed] 16. Kini, R.M. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes.

Toxicon 2003, 42, 827-840. [CrossRef] [PubMed] 17. Gutiérrez, J.M.; Rucavado, A. Snake venom metalloproteinases:Their role in the pathogenesis of local tissue damage. Biochimie 2000, 82, 841-850. [CrossRef] 18. Isbister, G.K. Snakebite doesn't cause disseminated intravascular coagulation: Coagulopathy and thrombotic microangiopathy in snake envenoming. Semin. Thromb. Hemost. 2010, 36, 444-451. [CrossRef] [PubMed] 19. Ranawaka, U.K.; Lalloo, D.G.; de Silva, H.J. Neurotoxicity in snakebite-The limits of our knowledge.

PLoS Negl. Trop. Dis. 2013, 7, e2302. [CrossRef] [PubMed] 20. Theakston, R.D.; Laing, G.D. Diagnosis of snakebite and the importance of immunological tests in venom research. Toxins 2014, 6, 1667-1695. [CrossRef] [PubMed] 21. Theakston, R.D.; Lloyd-Jones, M.J.; Reid, H.A. Micro-elisa for detecting and assaying snake venom and venom-antibody. Lancet 1977, 2, 639-641. [CrossRef] 22. Theakston, R.D.G. The application of immunoassay techniques, including enzyme-linked immunosorbent assay (elisa), to snake venom research. Toxicon 1983, 21, 341-352. [CrossRef] 23. Dhananjaya, B.L.; Menon, J.C.; Joseph, J.K.; Raveendran, D.K.; Oommen, O.V. Snake venom detection kit (svdk): Update on current aspects and challenges. In Clinical Toxinology in Asia Pacific and Africa; Gopalakrishnakone, P., Faiz, A., Fernando, R., Gnanathasan, C.A., Habib, A.G., Yang, C.-C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 379-400.

24. Selvanayagam, Z.E.; Gopalakrishnakone, P. Tests for detection of snake venoms, toxins and venom antibodies: Review on recent trends (1987-1997). Toxicon 1999, 37, 565-586. [CrossRef] 25. Allen, G.E.; Brown, S.G.A.; Buckley, N.A.; O'Leary, M.A.; Page, C.B.; Currie, B.J.; White, J.; Isbister, G.K.

Clinical effects and antivenom dosing in brown snake (pseudonaja spp.) envenoming-Australian snakebite project (asp-14). PLoS ONE 2012, 7. [CrossRef] [PubMed] 26. Audebert, F.; Grosselet, O.; Sabouraud, A.; Bon, C. Quantitation of venom antigens from european vipers in human serum or urine by elisa. J. Anal. Toxicol. 1993, 17, 236-240. [CrossRef] [PubMed] 27. Guo, M.P.; Wang, Q.C.; Liu, G.F. Pharmacokinetics of cytotoxin from chinese cobra (naja naja atra) venom.

Toxicon 1993, 31, 339-343. [CrossRef] 28. Hanvivatvong, O.; Mahasandana, S.; Karnchanachetanee, C. Kinetic study of russell's viper venom in envenomed patients. Am. J. Trop. Med. Hyg. 1997, 57, 605-609. [CrossRef] [PubMed] 29. Khin Ohn, L.; Aye Aye, M.; Tun, P.; Theingie, N.; Min, N. Russell's viper venom levels in serum of snake bite victims in burma. Trans. R. Soc. Trop. Med. Hyg. 1984, 78, 165-168. [OpenAIRE]

30. Sano-Martins, I.S.; Tomy, S.C.; Campolina, D.; Dias, M.B.; de Castro, S.C.; de Sousa-e-Silva, M.C.; Amaral, C.F.; Rezende, N.A.; Kamiguti, A.S.; Warrell, D.A.; et al. Coagulopathy following lethal and non-lethal envenoming of humans by the south american rattlesnake (crotalus durissus) in brazil. QJM 2001, 94, 551-559. [CrossRef] [PubMed] 31. Barral-Netto, M.; Schriefer, A.; Barral, A.; Almeida, A.R.P.; Mangabeira, A. Serum levels of bothropic venom in patients without antivenom intervention. Am. J. Trop. Med. Hyg. 1991, 45, 751-754. [CrossRef] [PubMed] 32. Kulawickrama, S.; O'Leary, M.A.; Hodgson, W.C.; Brown, S.G.; Jacoby, T.; Davern, K.; Isbister, G.K. [OpenAIRE]

Development of a sensitive enzyme immunoassay for measuring taipan venom in serum. Toxicon 2010, 55, 1510-1518. [CrossRef] [PubMed] 33. O'Leary, M.A.; Isbister, G.K.; Schneider, J.J.; Brown, S.G.A.; Currie, B.J. Enzyme immunoassays in brown snake (pseudonaja spp.) envenoming: Detecting venom, antivenom and venom-antivenom complexes.

Toxicon 2006, 48, 4-11. [CrossRef] [PubMed] 34. Sjostrom, L.; Karlson-Stiber, C.; Persson, H.; Al-Abdulla, I.H.; Smith, D.C. Development and clinical application of immunoassays for european adder (vipera berus berus) venom and antivenom. Toxicon 1996, 34, 91-98. [CrossRef] 35. Audebert, F.; Urtizberea, M.; Sabouraud, A.; Scherrmann, J.M.; Bon, C. Pharmacokinetics of vipera aspis venom after experimental envenomation in rabbits. J. Pharmacol. Exp. Ther. 1994, 268, 1512-1517. [PubMed] 36. Minton, S.A. Present tests for detection of snake venom: Clinical applications. Ann. Emerg. Med. 1987, 16, 932-937. [CrossRef] 37. Toyama, M.H.; Soares, A.M.; Wen-Hwa, L.; Polikarpov, I.; Giglio, J.R.; Marangoni, S. Amino acid sequence of piratoxin-ii, a myotoxic lys49 phospholipase A2 homologue from bothrops pirajai venom. Biochimie 2000, 82, 245-250. [CrossRef] 38. Burke, J.E.; Dennis, E.A. Phospholipase A2 biochemistry. Cardiovasc. Drugs Ther. 2009, 23, 49-59. [CrossRef] [PubMed] 39. Arni, R.K.; Ward, R.J. Phospholipase A2-A structural review. Toxicon 1996, 34, 827-841. [CrossRef] 40. Bjarnason, J.B.; Fox, J.W. Hemorrhagic metalloproteinases from snake venoms. Pharmacol. Ther. 1994, 62, 325-372. [CrossRef] 41. Takeda, S.; Takeya, H.; Iwanaga, S. Snake venom metalloproteinases: Structure, function and relevance to the mammalian adam/adamts family proteins. Biochim. Biophys. Acta Proteins Proteom. 2012, 1824, 164-176.

[CrossRef] [PubMed] 42. Serrano, S.M.T.; Maroun, R.C. Snake venom serine proteinases: Sequence homology vs. Substrate specificity, a paradox to be solved. Toxicon 2005, 45, 1115-1132. [CrossRef] [PubMed] 43. Matsui, T.; Fujimura, Y.; Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochim.

32 references, page 1 of 3
Abstract
Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min...
Subjects
Medical Subject Headings: complex mixtures
free text keywords: Review, snakes, venom, pharmacokinetics, elapid, viper, toxins, This review investigates the current knowledge of snake venom pharmacokinetics. In addition we conducted an exploratory population pharmacokinetic analysis of timed venom concentration data extracted from the literature, which can be used as a prior for the future development of substantial snake venom pharmacokinetic models., Medicine, R, Toxicology, Health, Toxicology and Mutagenesis, Future studies, Pharmacology, Bioavailability, Volume of distribution, Antivenom, Snake venom, Biology, Biochemistry, NONMEM
Funded by
NHMRC| Translational Venom and Antivenom Research
Project
  • Funder: National Health and Medical Research Council (NHMRC) (NHMRC)
  • Project Code: 1110343
  • Funding stream: Centres of Research Excellence
,
NHMRC| Improving health outcomes in drug overdose and envenoming: risk assessment and interventional studies
Project
  • Funder: National Health and Medical Research Council (NHMRC) (NHMRC)
  • Project Code: 1061041
  • Funding stream: Research Fellowships
32 references, page 1 of 3

Warrell, D.A. Guidelines for the Management of Snake-Bites; World Health Organization: Geneva, Switzerland, 5. Warrell, D.A. Snake bite. Lancet 2010, 375, 77-88. [CrossRef] 6. Warrell, D.A.; Gutiérrez, J.M.; Organization, W.H. Rabies and Envenomings: A Neglected Public Health Issue: Report of a Consultative Meeting; World Health Organization: Geneva, Switzerland, 2007.

7. Tasoulis, T.; Isbister, K.G. A review and database of snake venom proteomes. Toxins 2017, 9, 290. [CrossRef] [PubMed] 8. Fry, B.G.; Vidal, N.; van der Weerd, L.; Kochva, E.; Renjifo, C. Evolution and diversification of the toxicofera reptile venom system. J. Proteom. 2009, 72, 127-136. [CrossRef] [PubMed] 9. Vidal, N. Colubroid systematics: Evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J. Toxicol. Toxin Rev. 2002, 21, 21-41. [CrossRef] 10. Bieber, A.L. Metal and nonprotein constituents in snake venoms. In Snake Venoms; Lee, C.-Y., Ed.; Springer: Berlin, Heidelberg, 1979; pp. 295-306. [OpenAIRE]

11. Bon, C. Pharmacokinetics of venom toxins and their modification by antivenom therapy. J. Toxicol. Toxin Rev.

2003, 22, 129-138. [CrossRef] 12. Chippaux, J.P.; Williams, V.; White, J. Snake venom variability: Methods of study, results and interpretation.

Toxicon 1991, 29, 1279-1303. [CrossRef] 13. Isbister, G.K.; Brown, S.G.A.; Page, C.B.; McCoubrie, D.L.; Greene, S.L.; Buckley, N.A. Snakebite in australia: A practical approach to diagnosis and treatment. Med. J. Aust. 2013, 199, 763-768. [CrossRef] [PubMed] 14. Mehta, S.R.; Sashindran, V.K. Clinical features and management of snake bite. Med. J. Armed Forces India 2002, 58, 247-249. [CrossRef] 15. Gasanov, S.E.; Dagda, R.K.; Rael, E.D. Snake venom cytotoxins, phospholipase A2s, and Zn2+-dependent metalloproteinases: Mechanisms of action and pharmacological relevance. J. Clin. Toxicol. 2014, 4, 1000181. [OpenAIRE]

[CrossRef] [PubMed] 16. Kini, R.M. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes.

Toxicon 2003, 42, 827-840. [CrossRef] [PubMed] 17. Gutiérrez, J.M.; Rucavado, A. Snake venom metalloproteinases:Their role in the pathogenesis of local tissue damage. Biochimie 2000, 82, 841-850. [CrossRef] 18. Isbister, G.K. Snakebite doesn't cause disseminated intravascular coagulation: Coagulopathy and thrombotic microangiopathy in snake envenoming. Semin. Thromb. Hemost. 2010, 36, 444-451. [CrossRef] [PubMed] 19. Ranawaka, U.K.; Lalloo, D.G.; de Silva, H.J. Neurotoxicity in snakebite-The limits of our knowledge.

PLoS Negl. Trop. Dis. 2013, 7, e2302. [CrossRef] [PubMed] 20. Theakston, R.D.; Laing, G.D. Diagnosis of snakebite and the importance of immunological tests in venom research. Toxins 2014, 6, 1667-1695. [CrossRef] [PubMed] 21. Theakston, R.D.; Lloyd-Jones, M.J.; Reid, H.A. Micro-elisa for detecting and assaying snake venom and venom-antibody. Lancet 1977, 2, 639-641. [CrossRef] 22. Theakston, R.D.G. The application of immunoassay techniques, including enzyme-linked immunosorbent assay (elisa), to snake venom research. Toxicon 1983, 21, 341-352. [CrossRef] 23. Dhananjaya, B.L.; Menon, J.C.; Joseph, J.K.; Raveendran, D.K.; Oommen, O.V. Snake venom detection kit (svdk): Update on current aspects and challenges. In Clinical Toxinology in Asia Pacific and Africa; Gopalakrishnakone, P., Faiz, A., Fernando, R., Gnanathasan, C.A., Habib, A.G., Yang, C.-C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 379-400.

24. Selvanayagam, Z.E.; Gopalakrishnakone, P. Tests for detection of snake venoms, toxins and venom antibodies: Review on recent trends (1987-1997). Toxicon 1999, 37, 565-586. [CrossRef] 25. Allen, G.E.; Brown, S.G.A.; Buckley, N.A.; O'Leary, M.A.; Page, C.B.; Currie, B.J.; White, J.; Isbister, G.K.

Clinical effects and antivenom dosing in brown snake (pseudonaja spp.) envenoming-Australian snakebite project (asp-14). PLoS ONE 2012, 7. [CrossRef] [PubMed] 26. Audebert, F.; Grosselet, O.; Sabouraud, A.; Bon, C. Quantitation of venom antigens from european vipers in human serum or urine by elisa. J. Anal. Toxicol. 1993, 17, 236-240. [CrossRef] [PubMed] 27. Guo, M.P.; Wang, Q.C.; Liu, G.F. Pharmacokinetics of cytotoxin from chinese cobra (naja naja atra) venom.

Toxicon 1993, 31, 339-343. [CrossRef] 28. Hanvivatvong, O.; Mahasandana, S.; Karnchanachetanee, C. Kinetic study of russell's viper venom in envenomed patients. Am. J. Trop. Med. Hyg. 1997, 57, 605-609. [CrossRef] [PubMed] 29. Khin Ohn, L.; Aye Aye, M.; Tun, P.; Theingie, N.; Min, N. Russell's viper venom levels in serum of snake bite victims in burma. Trans. R. Soc. Trop. Med. Hyg. 1984, 78, 165-168. [OpenAIRE]

30. Sano-Martins, I.S.; Tomy, S.C.; Campolina, D.; Dias, M.B.; de Castro, S.C.; de Sousa-e-Silva, M.C.; Amaral, C.F.; Rezende, N.A.; Kamiguti, A.S.; Warrell, D.A.; et al. Coagulopathy following lethal and non-lethal envenoming of humans by the south american rattlesnake (crotalus durissus) in brazil. QJM 2001, 94, 551-559. [CrossRef] [PubMed] 31. Barral-Netto, M.; Schriefer, A.; Barral, A.; Almeida, A.R.P.; Mangabeira, A. Serum levels of bothropic venom in patients without antivenom intervention. Am. J. Trop. Med. Hyg. 1991, 45, 751-754. [CrossRef] [PubMed] 32. Kulawickrama, S.; O'Leary, M.A.; Hodgson, W.C.; Brown, S.G.; Jacoby, T.; Davern, K.; Isbister, G.K. [OpenAIRE]

Development of a sensitive enzyme immunoassay for measuring taipan venom in serum. Toxicon 2010, 55, 1510-1518. [CrossRef] [PubMed] 33. O'Leary, M.A.; Isbister, G.K.; Schneider, J.J.; Brown, S.G.A.; Currie, B.J. Enzyme immunoassays in brown snake (pseudonaja spp.) envenoming: Detecting venom, antivenom and venom-antivenom complexes.

Toxicon 2006, 48, 4-11. [CrossRef] [PubMed] 34. Sjostrom, L.; Karlson-Stiber, C.; Persson, H.; Al-Abdulla, I.H.; Smith, D.C. Development and clinical application of immunoassays for european adder (vipera berus berus) venom and antivenom. Toxicon 1996, 34, 91-98. [CrossRef] 35. Audebert, F.; Urtizberea, M.; Sabouraud, A.; Scherrmann, J.M.; Bon, C. Pharmacokinetics of vipera aspis venom after experimental envenomation in rabbits. J. Pharmacol. Exp. Ther. 1994, 268, 1512-1517. [PubMed] 36. Minton, S.A. Present tests for detection of snake venom: Clinical applications. Ann. Emerg. Med. 1987, 16, 932-937. [CrossRef] 37. Toyama, M.H.; Soares, A.M.; Wen-Hwa, L.; Polikarpov, I.; Giglio, J.R.; Marangoni, S. Amino acid sequence of piratoxin-ii, a myotoxic lys49 phospholipase A2 homologue from bothrops pirajai venom. Biochimie 2000, 82, 245-250. [CrossRef] 38. Burke, J.E.; Dennis, E.A. Phospholipase A2 biochemistry. Cardiovasc. Drugs Ther. 2009, 23, 49-59. [CrossRef] [PubMed] 39. Arni, R.K.; Ward, R.J. Phospholipase A2-A structural review. Toxicon 1996, 34, 827-841. [CrossRef] 40. Bjarnason, J.B.; Fox, J.W. Hemorrhagic metalloproteinases from snake venoms. Pharmacol. Ther. 1994, 62, 325-372. [CrossRef] 41. Takeda, S.; Takeya, H.; Iwanaga, S. Snake venom metalloproteinases: Structure, function and relevance to the mammalian adam/adamts family proteins. Biochim. Biophys. Acta Proteins Proteom. 2012, 1824, 164-176.

[CrossRef] [PubMed] 42. Serrano, S.M.T.; Maroun, R.C. Snake venom serine proteinases: Sequence homology vs. Substrate specificity, a paradox to be solved. Toxicon 2005, 45, 1115-1132. [CrossRef] [PubMed] 43. Matsui, T.; Fujimura, Y.; Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochim.

32 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2018

Pharmacokinetics of Snake Venom

Suchaya Sanhajariya; Stephen Duffull; Geoffrey Isbister;