publication . Article . 2015

Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data.

Pierre eDutilleul; Liwen eHan; Fernando eValladeres; Christian eMessier; Christian eMessier;
Open Access English
  • Published: 24 Mar 2015 Journal: Frontiers in Plant Science, volume 6 (issn: 1664-462X, Copyright policy)
  • Publisher: Frontiers Media S.A.
  • Country: Spain
Abstract
Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike)...
Subjects
free text keywords: Plant Science, plant light interception and shade tolerance, conifer crowns, needlelike vs. scalelike leaves, leaf area and volume, silhouette-to-total-area ratio (STAR), branching pattern complexity, fractal dimensions (FD), computed tomography (CT) scanning, Plant culture, SB1-1110, Methods, Branching (version control), Computed tomography, medicine.diagnostic_test, medicine, Correlation, Shade tolerance, Interception, Plant growth, Structural geometry, Biology, Phyllotaxis, Botany
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
34 references, page 1 of 3

Ackerly D. D. Bazzaz F. A. (1995). Seedling crown orientation and interception of diffuse radiation in tropical forest gaps. Ecology 76, 1134–1146. 10.2307/1940921 [OpenAIRE] [DOI]

Anderson S. H. Hopmans J. W. (eds.). (2013). Soil-Water-Root Processes: Advances in Tomography and Imaging, SSSA Special Publication 61. Madison, WI: Soil Science Society of America.

Burns R. M. Honkala B. H. (1990). Silvics of North America. 1. Conifers, Agriculture Handbook 654, Vol. 1. Washington, DC: US Department of Agriculture, Forest Service.

Delagrange S. Jauvin C. Rochon P. (2014). PypeTree: a tool for reconstructing tree perennial tissues from point clouds. Sensors 14, 4271–4289. 10.3390/s140304271 24599190 [OpenAIRE] [PubMed] [DOI]

Delagrange S. Rochon P. (2011). Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology. Ann. Bot. 108, 991–1000. 10.1093/aob/mcr064 21515607 [OpenAIRE] [PubMed] [DOI]

Dutilleul P. Han L. Beaulieu J. (2014). How do trees grow? Response from the graphical and quantitative analyses of computed tomography scanning data collected on stem sections. C. R. Biol. 337, 391–398. 10.1016/j.crvi.2014.05.002 24961559 [OpenAIRE] [PubMed] [DOI]

Dutilleul P. Han L. Smith D. L. (2008). Plant light interception can be explained via computed tomography scanning: demonstration with pyramidal cedar (Thuja occidentalis, Fastigiata). Ann. Bot. 101, 19–23. 10.1093/aob/mcm273 17981879 [OpenAIRE] [PubMed] [DOI]

Dutilleul P. Lontoc-Roy M. Prasher S. O. (2005). Branching out with a CT scanner. Trends Plant Sci. 10, 411–412. 10.1016/j.tplants.2005.06.004 16023397 [OpenAIRE] [PubMed] [DOI]

Duursma R. A. Falster D. S. Valladares F. Sterck F. J. Pearcy R. W. Lusk C. H. . (2012). Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants. New Phytol. 193, 397–408. 10.1111/j.1469-8137.2011.03943.x 22066945 [OpenAIRE] [PubMed] [DOI]

Foroutan-pour K. Dutilleul P. Smith D. L. (1999a). Soybean canopy development as affected by population density and intercropping with corn: fractal analysis in comparison with other quantitative approaches. Crop Sci. 39, 1784–1791. 10.2135/cropsci1999.3961784x [OpenAIRE] [DOI]

Foroutan-pour K. Dutilleul P. Smith D. L. (1999b). Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 105, 195–210. 10.1016/S0096-3003(98)10096-6 [OpenAIRE] [DOI]

Foroutan-pour K. Dutilleul P. Smith D. L. (2001). Inclusion of the fractal dimension of leafless plant structure in the Beer-Lambert law. Agron. J. 93, 333–338. 10.2134/agronj2001.932333x 17981879 [OpenAIRE] [PubMed] [DOI]

Gregory P. J. Hutchison D. J. Read D. B. Jenneson P. M. Gilboy W. B. Morton E. J. (2003). Non-invasive imaging of roots with high resolution X-ray micro-tomography. Plant Soil 255, 351–359. 10.1023/A:1026179919689 [OpenAIRE] [DOI]

Hosoi F. Nakai Y. Omasa K. (2013). 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS J. Photogramm. Remote Sens. 82, 41–48. 10.1016/j.isprsjprs.2013.04.011 [OpenAIRE] [DOI]

Humbert L. Gagnon D. Kneeshaw D. Messier C. (2007). A shade tolerance index for common understory species of northeastern North America. Ecol. Indic. 7, 195–207. 10.1016/j.ecolind.2005.12.002 [OpenAIRE] [DOI]

34 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2015

Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data.

Pierre eDutilleul; Liwen eHan; Fernando eValladeres; Christian eMessier; Christian eMessier;