publication . Article . 2017

Development of face recognition: Dynamic causal modelling of MEG data

Wei He;
Open Access
  • Published: 23 Nov 2017 Journal: Developmental Cognitive Neuroscience, volume 30, pages 13-22 (issn: 1878-9293, Copyright policy)
  • Publisher: Elsevier BV
Abstract
Highlights • M250 shows amplitude sensitivity to face repetition in adults, but latency sensitivity in children. • Earlier peaks (M100 and M170) show no sensitivity to face repetition in either group. • Face repetition modulates reciprocal connections between OFA and FFA in both groups. • Repetition modulates low-level visual projections to OFA and FFA in adults but only to OFA in children.
Subjects
free text keywords: Cognitive Neuroscience, Superior temporal sulcus, Latency (engineering), Cognitive psychology, Brain activity and meditation, Communication, business.industry, business, Age groups, Electrophysiology, Dynamic causal modelling, Facial recognition system, Audiology, medicine.medical_specialty, medicine, Psychology, Fusiform face area, Original Research, MEG, Face recognition, Repetition, DCM, M250, M170, Neurophysiology and neuropsychology, QP351-495
64 references, page 1 of 5

Benjamini, Y., Hochberg, Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.). 1995; 57 (1): 289-300

Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G.. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci.. 1996; 8 (6): 551-565 [OpenAIRE] [PubMed]

Brown, T., Jernigan, T.. Brain development during the preschool years. Neuropsychol. Rev.. 2012; 22 (4): 313-333 [OpenAIRE] [PubMed]

Cantlon, J.F., Pinel, P., Dehaene, S., Pelphrey, K.A.. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex. 2010; 21 (1): 191-199 [OpenAIRE] [PubMed]

Chumbley, J.R., Friston, K.J.. False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage. 2009; 44 (1): 62-70 [PubMed]

Cohen Kadosh, K., Johnson, M.H., Henson, R., Dick, F., Blakemore, S.. Differential face-network adaptation in children, adolescents and adults. Neuroimage. 2013; 69 [OpenAIRE]

David, O., Kiebel, S., Harrison, L.M., Mattout, J., Kilner, J.M., Friston, K.J.. Dynamic causal modelling of evoked responses in EEG and MEG. Neuroimage. 2006; 30 (4): 1255-1272 [OpenAIRE] [PubMed]

de Heering, A., Rossion, B.. Rapid categorization of natural face images in the infant right hemisphere. Elife. 2015; 4: e06564 [OpenAIRE] [PubMed]

Eger, E., Schyns, P.G., Kleinschmidt, A.. Scale invariant adaptation in fusiform face-responsive regions. Neuroimage. 2004; 22 (1): 232-242 [PubMed]

Eimer, M., Calder, A., Rhodes, G., Johnson, M., Haxby, J.. Oxford Handbook of Face Perception. 2011: 329-344

Ewbank, M.P., Henson, R.N., Row, J.B.. Different neural mechanisms within occipitotemporal cortex underlie repetition suppression across same and different-size faces. Cereb. Cortex. 2012; 23 (5): 1073-1084 [OpenAIRE] [PubMed]

Friston, K.J., Preller, K.H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., Zeidman, P.. Dynamic causal modelling revisited. Neuroimage. 2017

Fairhall, S.L., Ishai, A.. Effective connectivity within the distributed cortical network for face perception. Cereb. Cortex. 2006; 17 (10): 2400-2406 [PubMed]

Gauthier, I., Tarr, M.J., Moylan, J., Anderson, A.W., Skydlarski, P., Gore, J.C.. Does visual subordinate-level categorisation engage the functionally defined fusiform face area?. Cogn. Neuropsychol.. 2000; 17 (1-3): 143-164 [PubMed]

Gauthier, I., Tarr, M.J., Moylan, J., Skydlarski, P., Gore, J.C., Anderson, A.W.. The fusiform face area is part of a network that processes faces at the individual level. J. Cogn. Neurosci.. 2000; 12 (3): 495-504 [OpenAIRE] [PubMed]

64 references, page 1 of 5
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2017

Development of face recognition: Dynamic causal modelling of MEG data

Wei He;