publication . Article . 2016

Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente

Alexander Mora Collazos;
Open Access
  • Published: 24 Nov 2016 Journal: Nova Scientia, volume 8, page 361 (eissn: 2007-0705, Copyright policy)
  • Publisher: Universidad de LaSalle Bajio
Abstract
Resumen Introducción: El presente trabajo tuvo como objetivo identificar y caracterizar microorganismos provenientes de un agua residual industrial potencialmente útiles en biorremediación de aguas contaminadas con cromo hexavalente. Metodología: Se realizó el aislamiento de tres microorganismos partiendo de un agua residual industrial proveniente de una empresa de galvanoplastia. Se evaluó el potencial de los microorganismos aislados en su capacidad para reducir cromo hexavalente; escogiéndose al aislado bacteriano G3 por mostrase potencialmente útiles en biorremediación de cromo hexavalente. Se realizó la caracterización morfológica, bioquímica e inferencias f...
Subjects
free text keywords: Science, Q, Science (General), Q1-390, Social Sciences, H, Social sciences (General), H1-99, Agua residual industrial, Bacillus, Cromo hexavalente, extracto libre de células, cell-free extract, industrial wastewater, Bioremediation, Chemistry, Chromate conversion coating, Industrial wastewater treatment, Hexavalent chromium, chemistry.chemical_compound, Bacillus cereus, biology.organism_classification, biology, Food science, 16S ribosomal RNA, Microorganism, Chromium, chemistry.chemical_element

Asmatullah, Qureshi, S. N., Shakoori, A. R. (1998). Hexavalent chromium-induced congenital abnormalities in chick embryos. J Appl Toxicol, 18(3), 167-171.

Brune, K. D., Bayer, T. S. (2012). Engineering microbial consortia to enhance biomining and bioremediation. Frontiers in Microbiology, 3, 203. doi:10.3389/fmicb.2012.00203 Cervantes, C., Campos-Garcı́a, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., TorresGuzmán, J. C., Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25(3), 335-347. doi:http://dx.doi.org/10.1016/S0168- 6445(01)00057-2 Cheung, K. H., Gu, J.-D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation, 59(1), 8-15. doi:http://dx.doi.org/10.1016/j.ibiod.2006.05.002 Darriba, D., Taboada, G. L., Doallo, R., Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing Nat Methods (Vol. 9, pp. 772). United States.

Dey, S., Pandit, B., Paul, A. K. (2014). Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment. Journal of Mining, 2014, 8. doi:10.1155/2014/941341 Dhal, B., Thatoi, H. N., Das, N. N., Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review.

Journal of Hazardous Materials, 250-251(0), 272-291.

doi:http://dx.doi.org/10.1016/j.jhazmat.2013.01.048 Elangovan, R., Philip, L., Chandraraj, K. (2009). Hexavalent Chromium Reduction by Free and Immobilized Cell-free Extract of Arthrobacter rhombi-RE. Applied Biochemistry and Biotechnology, 160(1), 81-97. doi:10.1007/s12010-008-8515-6 El-Banna, N., Qaddoumi, SS. (2016) Antimicrobial activity of Bacillus cereus: Isolation, identification and the effect of carbon and nitrogen source on its antagonistic activity. J Microbiol Antimicrob, 8(2):7-13. DOI: 10.5897/JMA2015.0340 Ezaka, E., Anyanwu, CU. (2011) Chromium (VI) tolerance of bacterial strains isolated from sewage oxidation ditch. Int J Environ Sci,1(7):1725-34.

Fendorf, S. E. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67(1-2), 55- 71. doi:http://dx.doi.org/10.1016/0016-7061(94)00062-F Focardi, S., Pepi, M., Landi, G., Gasperini, S., Ruta, M., Di Biasio, P., Focardi, S. E. (2012). [OpenAIRE]

Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. International Biodeterioration & Biodegradation, 66(1), 63- 70. doi:http://dx.doi.org/10.1016/j.ibiod.2011.11.003 Pinon-Castillo, H. A., Brito, E. M., Goni-Urriza, M., Guyoneaud, R., Duran, R., NevarezMoorillon, G. V., . . . Reyna-Lopez, G. E. (2010). Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. J Appl Microbiol, 109(6), 2173- 2182. doi:10.1111/j.1365-2672.2010.04849.x Rai, D., Eary, L. E., Zachara, J. M. (1989). The Chromium Paradox in Modern Life Environmental chemistry of chromium. Science of The Total Environment, 86(1), 15-23.

doi:http://dx.doi.org/10.1016/0048-9697(89)90189-7 Ruggaber, T., Talley, J. (2006). Enhancing Bioremediation with Enzymatic Processes: A Review. [OpenAIRE]

Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(2), 73-85.

doi:10.1061/(ASCE)1090-025X(2006)10:2(73) Sandana Mala, J. G., Sujatha, D., Rose, C. (2015). Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiological Research, 170, 235-241. doi:http://dx.doi.org/10.1016/j.micres.2014.06.001 Thatoi, H., Das, S., Mishra, J., Rath, B. P., Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management, 146, 383-399. doi:http://dx.doi.org/10.1016/j.jenvman.2014.07.014 Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology, 73(16), 5261-5267.

Whiteley, C. G., Lee, D. J. (2006). Enzyme technology and biological remediation. Enzyme and Microbial Technology, 38(3-4), 291-316. doi:http://dx.doi.org/10.1016/j.enzmictec.2005.10.010.

Any information missing or wrong?Report an Issue