publication . Article . 2018

Wheat Intercropping Enhances the Resistance of Watermelon to Fusarium Wilt

Huifang Lv; Huifang Lv; Haishun Cao; Muhammad A. Nawaz; Hamza Sohail; Yuan Huang; Fei Cheng; Qiusheng Kong; Zhilong Bie;
Open Access English
  • Published: 01 May 2018 Journal: Frontiers in Plant Science, volume 9 (eissn: 1664-462X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
A fungus Fusarium oxysporum F. sp. niveum (FON) is the causal organism of Fusarium wilt in watermelon. In this study, we evaluated the effect of wheat intercropping on the Fusarium wilt of watermelon. Our results showed that wheat intercropping decreases the incidence of Fusarium wilt of watermelon, likely due to the secretion of coumaric acid from the roots of wheat that dramatically inhibits FON spore germination, sporulation, and growth. The secretion of p-hydroxybenzoic acid, ferulic acid, and cinnamic acid from the roots of watermelon stimulates FON spore germination, sporulation, and growth. The secretion of phenolic acids and organic acids from the roots ...
Subjects
Medical Subject Headings: food and beverages
free text keywords: Plant Science, Original Research, intercropping, root exudates, disease resistance, coumaric acid, Fusarium Wilt, Fusarium oxysporum f. sp. Niveum, watermelon, wheat, Plant culture, SB1-1110, Phenolic acid, chemistry.chemical_compound, chemistry, Plant disease resistance, Ferulic acid, biology.organism_classification, biology, Fusarium oxysporum, Botany, Spore germination, Salicylic acid
Related Organizations
71 references, page 1 of 5

Badri D. V.Vivanco J. M. (2009). Regulation and function of root exudates. 32 666–681. 10.1111/J.1365-3040.2009.01926.x [OpenAIRE] [DOI]

Bai G. H.Shaner G. (1996). Variation in Fusarium graminearum and cultivar resistance to wheat scab. 80 975–979. 10.1094/PD-80-0975 [DOI]

Bais H. P.Weir T. L.Perry L. G.Gilroy S.Vivanco J. M. (2006). The role of root exudates in Rhizosphere interactions with plants and other organisms. 57 233–266. 10.1146/annurev.arplant.57.032905.105159 16669762 [OpenAIRE] [PubMed] [DOI]

Bie Z.Nawaz M. A.Huang Y.Lee J. M.Colla G. (2017). “Introduction of vegetable grafting,” in , eds Colla G.Alfocea F. P.Schwarz D. (Wallingford: CABI Publishing), 1–21.

Blum U.Staman K. L.Flint L. J.Shaffer S. R. (2000). Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid Phytotoxicity. 26 2059–2078. 10.1023/A:1005560214222 [DOI]

Booth C. (1971). Kew: Common wealth Mycological Institute, 32–35.

Brencic A.Winans S. C. (2005). Detection of and response to signals involved in host-microbe interactions by plant associated bacteria. 69 155–194. 10.1128/MMBR.69.1.155-194.2005 15755957 [OpenAIRE] [PubMed] [DOI]

Chaparro J. M.Badri D. V.Bakker M. G.Sugiyama A.Manter D. K.Vivanco J. M. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. 8:e55731. 10.1371/journal.pone.0055731 23383346 [OpenAIRE] [PubMed] [DOI]

Cheng F.Lu J. Y.Gao M.Shi K.Kong Q. S.Huang Y. (2016). Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. 7:1519. 10.3389/fpls.2016.01519 27777580 [OpenAIRE] [PubMed] [DOI]

D’Auria J. C.Gershenzon J. (2005). The secondary metabolism of Arabidopsis thaliana: growing like a weed. 8 308–316. 10.1016/j.pbi.2005.03.012 15860428 [OpenAIRE] [PubMed] [DOI]

Defraia C. T.Schmelz E. A.Mou Z. (2008). A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. 4 1–11. 10.1186/1746-4811-4-28 19117519 [OpenAIRE] [PubMed] [DOI]

Delaney T. P.Friedrich L.Ryals J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. 92 6602–6606. 10.1073/pnas.92.14.6602 11607555 [OpenAIRE] [PubMed] [DOI]

De-la-Pena C.Lei Z.Watson B. S.Sumner L. W.Vivanco J. M. (2008). Root-microbe communication through protein secretion. 283 25247–25255. 10.1074/jbc.M801967200 18635546 [PubMed] [DOI]

Dempsey D. A.Vlot A. C.Wildermuth M. C.Klessig D. F. (2011). Salicylic acid biosynthesis and metabolism. 9:e0156. 10.1199/tab.0156 22303280 [OpenAIRE] [PubMed] [DOI]

Dixon R. A. (2001). Natural products and plant disease resistance. 411 843–847. 10.1038/35081178 11459067 [OpenAIRE] [PubMed] [DOI]

71 references, page 1 of 5
Related research
Abstract
A fungus Fusarium oxysporum F. sp. niveum (FON) is the causal organism of Fusarium wilt in watermelon. In this study, we evaluated the effect of wheat intercropping on the Fusarium wilt of watermelon. Our results showed that wheat intercropping decreases the incidence of Fusarium wilt of watermelon, likely due to the secretion of coumaric acid from the roots of wheat that dramatically inhibits FON spore germination, sporulation, and growth. The secretion of p-hydroxybenzoic acid, ferulic acid, and cinnamic acid from the roots of watermelon stimulates FON spore germination, sporulation, and growth. The secretion of phenolic acids and organic acids from the roots ...
Subjects
Medical Subject Headings: food and beverages
free text keywords: Plant Science, Original Research, intercropping, root exudates, disease resistance, coumaric acid, Fusarium Wilt, Fusarium oxysporum f. sp. Niveum, watermelon, wheat, Plant culture, SB1-1110, Phenolic acid, chemistry.chemical_compound, chemistry, Plant disease resistance, Ferulic acid, biology.organism_classification, biology, Fusarium oxysporum, Botany, Spore germination, Salicylic acid
Related Organizations
71 references, page 1 of 5

Badri D. V.Vivanco J. M. (2009). Regulation and function of root exudates. 32 666–681. 10.1111/J.1365-3040.2009.01926.x [OpenAIRE] [DOI]

Bai G. H.Shaner G. (1996). Variation in Fusarium graminearum and cultivar resistance to wheat scab. 80 975–979. 10.1094/PD-80-0975 [DOI]

Bais H. P.Weir T. L.Perry L. G.Gilroy S.Vivanco J. M. (2006). The role of root exudates in Rhizosphere interactions with plants and other organisms. 57 233–266. 10.1146/annurev.arplant.57.032905.105159 16669762 [OpenAIRE] [PubMed] [DOI]

Bie Z.Nawaz M. A.Huang Y.Lee J. M.Colla G. (2017). “Introduction of vegetable grafting,” in , eds Colla G.Alfocea F. P.Schwarz D. (Wallingford: CABI Publishing), 1–21.

Blum U.Staman K. L.Flint L. J.Shaffer S. R. (2000). Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid Phytotoxicity. 26 2059–2078. 10.1023/A:1005560214222 [DOI]

Booth C. (1971). Kew: Common wealth Mycological Institute, 32–35.

Brencic A.Winans S. C. (2005). Detection of and response to signals involved in host-microbe interactions by plant associated bacteria. 69 155–194. 10.1128/MMBR.69.1.155-194.2005 15755957 [OpenAIRE] [PubMed] [DOI]

Chaparro J. M.Badri D. V.Bakker M. G.Sugiyama A.Manter D. K.Vivanco J. M. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. 8:e55731. 10.1371/journal.pone.0055731 23383346 [OpenAIRE] [PubMed] [DOI]

Cheng F.Lu J. Y.Gao M.Shi K.Kong Q. S.Huang Y. (2016). Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. 7:1519. 10.3389/fpls.2016.01519 27777580 [OpenAIRE] [PubMed] [DOI]

D’Auria J. C.Gershenzon J. (2005). The secondary metabolism of Arabidopsis thaliana: growing like a weed. 8 308–316. 10.1016/j.pbi.2005.03.012 15860428 [OpenAIRE] [PubMed] [DOI]

Defraia C. T.Schmelz E. A.Mou Z. (2008). A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. 4 1–11. 10.1186/1746-4811-4-28 19117519 [OpenAIRE] [PubMed] [DOI]

Delaney T. P.Friedrich L.Ryals J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. 92 6602–6606. 10.1073/pnas.92.14.6602 11607555 [OpenAIRE] [PubMed] [DOI]

De-la-Pena C.Lei Z.Watson B. S.Sumner L. W.Vivanco J. M. (2008). Root-microbe communication through protein secretion. 283 25247–25255. 10.1074/jbc.M801967200 18635546 [PubMed] [DOI]

Dempsey D. A.Vlot A. C.Wildermuth M. C.Klessig D. F. (2011). Salicylic acid biosynthesis and metabolism. 9:e0156. 10.1199/tab.0156 22303280 [OpenAIRE] [PubMed] [DOI]

Dixon R. A. (2001). Natural products and plant disease resistance. 411 843–847. 10.1038/35081178 11459067 [OpenAIRE] [PubMed] [DOI]

71 references, page 1 of 5
Related research
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue