publication . Article . Other literature type . 2015

Ultrastructural Biomarkers in Symbiotic Algae Reflect the Availability of Dissolved Inorganic Nutrients and Particulate Food to the Reef Coral Holobiont

Sabrina eRosset; Cecilia eD'Angelo; Jörg eWiedenmann; Jörg eWiedenmann;
Open Access English
  • Published: 26 Nov 2015 Journal: Frontiers in Marine Science (issn: 2296-7745, Copyright policy)
  • Publisher: Frontiers Media S.A.
  • Country: United States
Abstract
Reef building corals associated with symbiotic algae (zooxanthellae) can access environmental nutrients from different sources, most significantly via the uptake of dissolved inorganic nutrients by the algal symbiont and heterotrophic feeding of the coral host. Climate change is expected to alter the nutrient environment in coral reefs with the potential to benefit or disturb coral reef resilience. At present, the relative importance of the two major nutrient sources is not well understood, making predictions of the responses of corals to changes in their nutrient environment difficult. Therefore, we have examined the long-term effects of the availability of dif...
Subjects
Medical Subject Headings: fungibiochemical phenomena, metabolism, and nutritiontechnology, industry, and agriculturegeographic locationsnatural sciences
free text keywords: Climate Change, Symbiosis, biomarker, pollution, coral, coral reefs, Science, Q, General. Including nature conservation, geographical distribution, QH1-199.5, Marine Science, dissolved inorganic nutrients, corals, symbiodinium, heterotrophic feeding, nutrient limitation, dinoflagellates, Biology, Algae, biology.organism_classification, Zooxanthellae, Reef, geography.geographical_feature_category, geography, Euphyllia, Coral reef, Nutrient, Ecology
Related Organizations
Funded by
EC| INCORALS
Project
INCORALS
Influence of nutrient starvation on corals' susceptibility to bleaching
  • Funder: European Commission (EC)
  • Project Code: 311179
  • Funding stream: FP7 | SP2 | ERC
,
RCUK| Understanding the exceptional heat tolerance of reef corals from the Persian/Arabian Gulf
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: NE/K00641X/1
  • Funding stream: NERC
82 references, page 1 of 6

Anthony K. (2000). Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19, 59–67. 10.1007/s003380050227 [OpenAIRE] [DOI]

Anthony K. R. N. Fabricius K. E. (2000). Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol. 252, 221–253. 10.1016/S0022-0981(00)00237-9 10967335 [PubMed] [DOI]

Bachar A. Achituv Y. Pasternak Z. Dubinsky Z. (2007). Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J. Exp. Mar. Biol. Ecol. 349, 295–298. 10.1016/j.jembe.2007.05.030 [OpenAIRE] [DOI]

Bak R. Joenje M. de Jong I. Lambrechts D. Nieuwland G. (1998). Bacterial suspension feeding by coral reef benthic organisms. Mar. Ecol. Prog. Ser. 175, 285–288. 10.3354/meps175285 [OpenAIRE] [DOI]

Baker A. C. Glynn P. W. Riegl B. (2008). Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471. 10.1016/j.ecss.2008.09.003 [OpenAIRE] [DOI]

Barshis D. J. Ladner J. T. Oliver T. A. Seneca F. O. Traylor-Knowles N. Palumbi S.R. . (2013). Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. U.S.A. 110, 1387–1392. 10.1073/pnas.1210224110 23297204 [OpenAIRE] [PubMed] [DOI]

Behrenfeld M. J. O'Malley R. T. Siegel D. A. McClain C. R. Sarmiento J. L. Feldman G. C. . (2006). Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755. 10.1038/nature05317 17151666 [OpenAIRE] [PubMed] [DOI]

Béraud E. Gevaert F. Rottier C. Ferrier-Pagès C. (2013). The response of the scleracti nian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674. 10.1242/jeb.085183 23531826 [OpenAIRE] [PubMed] [DOI]

Berner T. Izhaki I. (1994). Effect of exogenous nitrogen levels on ultrastructure of zooxanthellae from the hermatypic coral Pocillopora damicornis. Pacific Sci. 48, 254–262.

Bongiorni L. Shafir S. Angel D. Rinkevich B. (2003). Survival, growth and gonad development of two hermatypic corals subjected to in situ fish-farm nutrient enrichment. Mar. Ecol. Prog. Ser. 253, 137–144. 10.3354/meps253137 [OpenAIRE] [DOI]

Borell E. M. Bischof K. (2008). Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia 157, 593–601. 10.1007/s00442-008-1102-2 18618148 [OpenAIRE] [PubMed] [DOI]

Chavez F. Strutton P. Friederich G. (1999). Biological and chemical response of the equatorial Pacific Ocean to the 1997-98 El Niño. Science 80, 2126–2132. 10.1126/science.286.5447.2126 18618148 [OpenAIRE] [PubMed] [DOI]

Chust G. Allen J. I. Bopp L. Schrum C. Holt J. Tsiaras K. . (2014). Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Change Biol. 20, 2124–2139. 10.1111/gcb.12562 24604761 [OpenAIRE] [PubMed] [DOI]

Connolly S. R. Lopez-Yglesias M. A. Anthony K. R. N. (2012). Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31, 951–960. 10.1007/s00338-012-0925-9 [OpenAIRE] [DOI]

Crossland C. Barnes D. (1977). Nitrate assimilation enzymes from two hard corals, Acropora acuminata and Goniastrea australensis. Comp. Biochem. 57, 151–157. 10.1016/0305-0491(77)90165-1 [OpenAIRE] [DOI]

82 references, page 1 of 6
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2015

Ultrastructural Biomarkers in Symbiotic Algae Reflect the Availability of Dissolved Inorganic Nutrients and Particulate Food to the Reef Coral Holobiont

Sabrina eRosset; Cecilia eD'Angelo; Jörg eWiedenmann; Jörg eWiedenmann;