publication . Article . 2014

Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

H. MAZARI; K. AMEUR; N. BENSEDDIK; Z. BENAMARA; R. KHELIFI; M. MOSTEFAOUI; N. ZOUGAGH; N. BENYAHYA; R. BECHAREF; G. BASSOU; ...
Open Access English
  • Published: 01 May 2014 Journal: Sensors & Transducers (issn: 2306-8515, eissn: 1726-5479, Copyright policy)
  • Publisher: IFSA Publishing, S.L.
Abstract
The current-voltage (I-V) characteristics of Pt/(n.u.d)-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semiconductor interface were taken into account.
Subjects
free text keywords: GaN, Electrical Characterization, Modeling, Schottky Diode., Technology (General), T1-995
Download from
17 references, page 1 of 2

[1]. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN, Applied Physics Letters, Vol. 72 1998, pp. 3317-3319.

[2]. F. D. Auret, S. D. Goodman, F. K. Koschnick, J. M. Spaeth, B. Beaumont, P. Gibart, Sputter depositioninduced electron traps in epitaxially grown n-GaN, Applied Physics Letters., Vol. 74 1999, pp. 2173- 2175.

[3]. V. Rajagopal Reddy, P. Koteswara Rao, C. K. Ramesh, Annealing effects on structural and electrical properties of Ru/Au on n-GaN Schottky contacts, Materials Science and Engineering B, Vol. 137, 2007, pp. 200-204. [OpenAIRE]

[4]. A. Merve Ozbek, B. Jayant Baliga, Tunneling coefficient for GaN Schottky barrier diodes, SolidState Electronics, Vol. 62, 2011, pp. 1-4. [OpenAIRE]

[5]. B. Prasanna Lakshmi, M. Siva Pratap Reddy, A. Ashok Kumar, V. Rajagopal Reddy, Electrical transport properties of Au/SiO2/n-GaN MIS structure in a wide temperature range, Current Applied Physics, Vol. 12, 2012, pp. 765-772.

[6]. H. Mazari, N. Benseddik, Z. Benamara, K. Ameur, B. Soudini, H. Dib, Modeling and characterization on SiC/Ti Schottky diodes, Sensors Letters, Vol. 7, 2009, pp. 905-908.

[7]. H. C. Card, E. H. Rhoderick, Studies of tunnel MOS diodes II. Thermal equilibrium considerations, J. Phys. D: Apply. Phys., Vol. 4, 1971, pp. 1602-1606.

[8]. B. J. Baliga, Modern Power Devices, Wiley, New York, 1987.

[9]. F. A. Padovani, R. Straton, Field and ThermionicField. Emission in Schottky Barriers, Solid States Electronics, Vol. 9, 1966, pp. 695-707.

[10]. C. Raynaud, K. Isoird, M. Lazar, C. M. Johnson, N. Wright, Barrier height determination of SiC Schottky diodes by capacitance and current-voltage measurements, Journal of Applied Physics, Vol. 91, 2002, pp. 9841-9847. [OpenAIRE]

[11]. K. Suzue, S. N. Mohammad, Z. F. Fan, W. Kim, O. Aktas, A. E. Botchkarev, H. Morkoç, Electrical conduction in platinum-gallium nitride Schottky diodes, Journal of Applied Physics, Vol. 80, 1996, pp.4467-4478. [OpenAIRE]

[12]. H. Benmaza, B. Akkal, H. Abid, J. M. Bluet, M. Anani, Z. Bensaad, Barrier height inhomogeneities in a Ni/SiC-6H Schottky n-type diode, Microelectronics Journal, Vol. 39, 2008, pp. 80-84. [OpenAIRE]

[13]. B. Akkal, Z. Benamara, H. Abid, A. Talbi, B. Gruzza, Electrical characterization of Au/n-GaN Schottky diodes, Materials Chemistry and Physics, Vol. 85, 2004, pp. 27-31. [OpenAIRE]

[14]. M. Levinstein, S. L. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, John Wiley & Sons, New York, 2001.

[15]. M. K. Hudait, S. B. Krupanidhi, Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates, Materials Science and Engineering B, Vol. 87, 2001, pp. 141-147. [OpenAIRE]

17 references, page 1 of 2
Any information missing or wrong?Report an Issue