Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DOAJarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2010
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Copernicus Publications
Other literature type . 2018
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HESS Opinions "A random walk on water"

Authors: Koutsoyiannis, D.;

HESS Opinions "A random walk on water"

Abstract

According to the traditional notion of randomness and uncertainty, natural phenomena are separated into two mutually exclusive components, random (or stochastic) and deterministic. Within this dichotomous logic, the deterministic part supposedly represents cause-effect relationships and, thus, is physics and science (the "good"), whereas randomness has little relationship with science and no relationship with understanding (the "evil"). Here I argue that such views should be reconsidered by admitting that uncertainty is an intrinsic property of nature, that causality implies dependence of natural processes in time, thus suggesting predictability, but even the tiniest uncertainty (e.g. in initial conditions) may result in unpredictability after a certain time horizon. On these premises it is possible to shape a consistent stochastic representation of natural processes, in which predictability (suggested by deterministic laws) and unpredictability (randomness) coexist and are not separable or additive components. Deciding which of the two dominates is simply a matter of specifying the time horizon and scale of the prediction. Long horizons of prediction are inevitably associated with high uncertainty, whose quantification relies on the long-term stochastic properties of the processes.

Subjects by Vocabulary

Library of Congress Subject Headings: lcsh:GE1-350 lcsh:T lcsh:Geography. Anthropology. Recreation lcsh:Technology lcsh:TD1-1066 lcsh:G lcsh:Environmental technology. Sanitary engineering lcsh:Environmental sciences

Keywords

Technology, T, Environmental technology. Sanitary engineering, G, Environmental sciences, Geography. Anthropology. Recreation, GE1-350, TD1-1066

42 references, page 1 of 5

Battisti, D. S. and Naylor, R. L.: Historical warnings of future food insecurity with unprecedented seasonal heat, Science, 323, 240- 244, 2009.

Bernoulli, J.: Ars Conjectandi, Thurnisii fratres, Basel, 306+35 pp., 1713.

Birkhoff, G. D.: Proof of the ergodic theorem, Proc. Nat. Acad. Sci., 17, 656-660, 1931.

Chaitin, G. J.: Randomness and mathematical proof, Sci. Am., 232(5), 47-52, 1975.

Chaitin, G. J.: How real are real numbers?, http://arxiv.org/abs/ math.HO/0411418, last access: March 2010, 2004.

Cohn, T. A. and Lins, H. F.: Nature's style: Naturally trendy, Geophys. Res. Lett., 32, L23402, doi:10.1029/2005GL024476, 2005.

Duncan, M. J.: Orbital stability and the structure of the solar system, in 1994, in: Circumstellar Dust Disks and Planet Formation, Proceedings of the 10th IAP Astrophysics Meeting, Institut d'Astrophysique de Paris, edited by: Ferlet, R. and Vidal-Madjar, A., Editions Frontiers, Gif sur Yvette, France, 245-256, 1994.

Feynman, R.: The Character of Physical Law, MIT Press, Cambridge, MA, 1965.

Grassberger, P. and Procaccia, I.: Characterization of strange attractors, Phys. Rev. Lett., 50(5), 346-349, 1983.

Heisenberg, W.: U¨ ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys., 43, 172- 198, doi:10.1007/BF01397280, 1927, English translation by: Wheeler, J. A. and Zurek, H., Quantum Theory and Measurement, Princeton Univ. Press, 62-84, 1983.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average