publication . Article . Other literature type . 2018

Copper Bioleaching in China: Review and Prospect

Yin, Shenghua; Wang, Leiming; Kabwe, Eugie; Chen, Xun; Yan, Rongfu; An, Kai; Zhang, Lei; Wu, Aixiang;
Open Access
  • Published: 23 Jan 2018 Journal: Minerals, volume 8, page 32 (eissn: 2075-163X, Copyright policy)
  • Publisher: MDPI AG
Abstract
The commercial application of copper bioleaching, an environmentally-friendly approach for low-grade and secondary mineral resources recycling, has increased worldwide since the 2000s. As the world’s second-largest economic entity and the largest developing country, China has the largest demand for metal resources, significantly advancing the theory and industrial technology of copper bioleaching. This paper reviews the exploration and application of copper bioleaching in China. Two typical bioleaching applications and technological processes, bioheap leaching at the Zijinshan Copper Mine and bioheap leaching at the Dexing Copper Mine, are introduced. The consid...
Subjects
free text keywords: Bioleaching, Heap leaching, Industrial technology, Copper, chemistry.chemical_element, chemistry, Geology, Dump leaching, Copper mine, Leaching (agriculture), Waste management, Secondary mineral, Geochemistry, copper bioleaching, biotechnology, review, Mineralogy, QE351-399.2
Download fromView all 3 versions
Minerals
Article . 2018
Provider: Crossref
Minerals
Article
Provider: UnpayWall
Minerals
Article . 2018
256 references, page 1 of 18

Dunbar, W.S. Biotechnology and the mine of Tomorrow. Trends Biotechnol. 2017, 35, 79-89. [CrossRef] [PubMed]

Panda, S.; Akcil, A.; Pradhan, N.; Deveci, H. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol. 2015, 196, 694-706. [CrossRef] [PubMed] Fang, X.; Shen, Y.; Zhao, J.; Bao, X.M.; Qu, Y.B. Status and prospect of lignocellulosic bioethanol production in China. Bioresour. Technol. 2010, 101, 4814-4819. [CrossRef] [PubMed] [OpenAIRE]

Rawlings, D.E.; Johnson, D.B. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology 2007, 153, 315-324. [CrossRef] [PubMed] Ehrlich, H.L.; Brierley, C.L. Microbial Mineral Recovery; McGraw Hill Book Co.: New York, NY, USA, 1990.

6. Gentina, J.C.; Padilla, C.; Poirrier, P. Development of a culture strategy to produce a bacteriocin type substance utilizing a strain of Enterococcus mundtii. J. Biotechnol. 2010, 150, 414. [CrossRef] [OpenAIRE]

7. Acevedo, F.; Gentina, J.C.; Bustos, S. Bioleaching of minerals-A valid alternative for developing countries. J. Biotechnol. 1993, 31, 115-123. [CrossRef]

8. Petersen, J. Heap leaching as a key technology for recovery of values from low-grade ores-A brief overview. Hydrometallurgy 2016, 165, 206-212. [CrossRef]

9. Johnson, D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24-31. [CrossRef] [PubMed]

10. Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review. Hydrometallurgy 2006, 84, 81-102. [CrossRef] [OpenAIRE]

11. Pradhan, N.; Nathsarma, K.C.; Rao, K.S.; Sukla, L.B.; Mishra, B.K. Heap bioleaching of chalcopyrite: A review. Miner. Eng. 2008, 21, 355-365. [CrossRef]

12. Wang, Y.G.; Su, L.J.; Zhang, L.J.; Zeng, W.M.; Wu, J.Z.; Wan, L.L.; Qiu, G.Z.; Chen, X.H.; Zhou, H.B. Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium. Bioresour. Technol. 2012, 121, 348-354. [CrossRef] [PubMed]

13. Lee, J.C.; Pandey, B.D. Bio-processing of solid wastes and secondary resources for metal extraction-A review. Waste Manag. 2012, 32, 3-18. [CrossRef] [PubMed]

14. Ndlovu, S. Biohydrometallurgy for sustainable development in the African minerals industry. Hydrometallurgy 2008, 91, 20-27. [CrossRef]

15. Cloete, T.E.; Nel, L.H.; Theron, J. Biotechnology in South Africa. Trends Biotechnol. 2006, 24, 557-562. [CrossRef] [PubMed] [OpenAIRE]

16. Johnson, D.B. Biomining goes underground. Nat. Geosci. 2015, 8, 165-166. [CrossRef]

17. Orell, A.; Navarro, C.A.; Arancibia, R.; Mobarec, J.C.; Jerez, C.A. Life in blue: Copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnol. Adv. 2010, 28, 839-848. [CrossRef] [PubMed] [OpenAIRE]

256 references, page 1 of 18
Abstract
The commercial application of copper bioleaching, an environmentally-friendly approach for low-grade and secondary mineral resources recycling, has increased worldwide since the 2000s. As the world’s second-largest economic entity and the largest developing country, China has the largest demand for metal resources, significantly advancing the theory and industrial technology of copper bioleaching. This paper reviews the exploration and application of copper bioleaching in China. Two typical bioleaching applications and technological processes, bioheap leaching at the Zijinshan Copper Mine and bioheap leaching at the Dexing Copper Mine, are introduced. The consid...
Subjects
free text keywords: Bioleaching, Heap leaching, Industrial technology, Copper, chemistry.chemical_element, chemistry, Geology, Dump leaching, Copper mine, Leaching (agriculture), Waste management, Secondary mineral, Geochemistry, copper bioleaching, biotechnology, review, Mineralogy, QE351-399.2
Download fromView all 3 versions
Minerals
Article . 2018
Provider: Crossref
Minerals
Article
Provider: UnpayWall
Minerals
Article . 2018
256 references, page 1 of 18

Dunbar, W.S. Biotechnology and the mine of Tomorrow. Trends Biotechnol. 2017, 35, 79-89. [CrossRef] [PubMed]

Panda, S.; Akcil, A.; Pradhan, N.; Deveci, H. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol. 2015, 196, 694-706. [CrossRef] [PubMed] Fang, X.; Shen, Y.; Zhao, J.; Bao, X.M.; Qu, Y.B. Status and prospect of lignocellulosic bioethanol production in China. Bioresour. Technol. 2010, 101, 4814-4819. [CrossRef] [PubMed] [OpenAIRE]

Rawlings, D.E.; Johnson, D.B. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology 2007, 153, 315-324. [CrossRef] [PubMed] Ehrlich, H.L.; Brierley, C.L. Microbial Mineral Recovery; McGraw Hill Book Co.: New York, NY, USA, 1990.

6. Gentina, J.C.; Padilla, C.; Poirrier, P. Development of a culture strategy to produce a bacteriocin type substance utilizing a strain of Enterococcus mundtii. J. Biotechnol. 2010, 150, 414. [CrossRef] [OpenAIRE]

7. Acevedo, F.; Gentina, J.C.; Bustos, S. Bioleaching of minerals-A valid alternative for developing countries. J. Biotechnol. 1993, 31, 115-123. [CrossRef]

8. Petersen, J. Heap leaching as a key technology for recovery of values from low-grade ores-A brief overview. Hydrometallurgy 2016, 165, 206-212. [CrossRef]

9. Johnson, D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24-31. [CrossRef] [PubMed]

10. Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review. Hydrometallurgy 2006, 84, 81-102. [CrossRef] [OpenAIRE]

11. Pradhan, N.; Nathsarma, K.C.; Rao, K.S.; Sukla, L.B.; Mishra, B.K. Heap bioleaching of chalcopyrite: A review. Miner. Eng. 2008, 21, 355-365. [CrossRef]

12. Wang, Y.G.; Su, L.J.; Zhang, L.J.; Zeng, W.M.; Wu, J.Z.; Wan, L.L.; Qiu, G.Z.; Chen, X.H.; Zhou, H.B. Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium. Bioresour. Technol. 2012, 121, 348-354. [CrossRef] [PubMed]

13. Lee, J.C.; Pandey, B.D. Bio-processing of solid wastes and secondary resources for metal extraction-A review. Waste Manag. 2012, 32, 3-18. [CrossRef] [PubMed]

14. Ndlovu, S. Biohydrometallurgy for sustainable development in the African minerals industry. Hydrometallurgy 2008, 91, 20-27. [CrossRef]

15. Cloete, T.E.; Nel, L.H.; Theron, J. Biotechnology in South Africa. Trends Biotechnol. 2006, 24, 557-562. [CrossRef] [PubMed] [OpenAIRE]

16. Johnson, D.B. Biomining goes underground. Nat. Geosci. 2015, 8, 165-166. [CrossRef]

17. Orell, A.; Navarro, C.A.; Arancibia, R.; Mobarec, J.C.; Jerez, C.A. Life in blue: Copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnol. Adv. 2010, 28, 839-848. [CrossRef] [PubMed] [OpenAIRE]

256 references, page 1 of 18
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2018

Copper Bioleaching in China: Review and Prospect

Yin, Shenghua; Wang, Leiming; Kabwe, Eugie; Chen, Xun; Yan, Rongfu; An, Kai; Zhang, Lei; Wu, Aixiang;