publication . Article . 2015

Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses.

Gill SS;
Open Access English
  • Published: 16 Dec 2015 Journal: Frontiers in Plant Science, volume 6 (eissn: 1664-462X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for bet...
Subjects
Medical Subject Headings: food and beveragesfungi
free text keywords: Plant Science, Original Research, agroinfiltration, rice, helicases, OsXPB2 promoter, abiotic stress, tobacco, Plant culture, SB1-1110
50 references, page 1 of 4

Abe H. Yamaguchi-Shinozaki K. Urao T. Iwasaki T. Hosokawa D. Shinozaki K. (1997). Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868. 10.1105/tpc.9.10.1859 9368419 [OpenAIRE] [PubMed] [DOI]

Abel S. Theologis A. (1996). Early genes and auxin action. Plant Physiol. 111, 9–17. 10.1104/pp.111.1.9 8685277 [OpenAIRE] [PubMed] [DOI]

Banu S. A. Huda K. M. K. Tuteja N. (2014). Isolation and functional characterization of the promoter of a DEAD-box helicase Psp68 using Agrobacterium-mediated transient assay. Plant Signal. Behav. 9:e28992. 10.4161/psb.28992 24785194 [OpenAIRE] [PubMed] [DOI]

Battraw M. J. Hall T. C. (1990). Histochemical analysis of CaMV 35S promoter-glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol. 15, 527–538. 10.1007/BF00017828 2102372 [OpenAIRE] [PubMed] [DOI]

Boyko A. Blevins T. Yao Y. Golubov A. Bilichak A. Ilnytskyy Y. . (2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE 5:e9514. 10.1371/journal.pone.0009514 20209086 [OpenAIRE] [PubMed] [DOI]

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. 10.1016/0003-2697(76)90527-3 942051 [OpenAIRE] [PubMed] [DOI]

Brosché M. Schuler M. A. Kalbina I. Connor L. Strid A. (2002). Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem. Photobiol. Sci. 1, 656–664. 10.1039/B202659G 12665302 [OpenAIRE] [PubMed] [DOI]

Brossa R. Lopez-Carbonell M. Jubany-Mari T. Alegre L. (2011). Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J. Plant Growth Regul. 30, 322–333. 10.1007/s00344-011-9194-z [OpenAIRE] [DOI]

Capell T. Escobar C. Liu H. Burtin D. Lepri O. Christou P. (1998). Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Genet. 97, 246–254. 10.1007/s001220050892 [OpenAIRE] [DOI]

Chandler P. M. Robertson M. (1994). Gene-expression regulated by abscisic-acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 113–141. 10.1146/annurev.pp.45.060194.000553 [OpenAIRE] [DOI]

Chinnusamy V. Ohta M. Kanrar S. Lee B.-H. Hong X. Agarwal M. . (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043–1054. 10.1101/gad.1077503 12672693 [OpenAIRE] [PubMed] [DOI]

Clarke S. M. Cristescu S. M. Miersch O. Harren F. J. M. Wasternack C. (2009). Jasmonates act with salicylic acid to confer basal thermo tolerance in Arabidopsis thaliana. New Phytol. 182, 175–187. 10.1111/j.1469-8137.2008.02735.x 19140948 [OpenAIRE] [PubMed] [DOI]

Costa R. M. Morgante P. G. Berra C. M. Nakabashi M. Bruneau D. Bouchez D. . (2001). The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J. 28, 385–395. 10.1046/j.1365-313X.2001.01162.x 11737776 [OpenAIRE] [PubMed] [DOI]

Dang H. Q. Tran N. Q. Gill S. S. Tuteja R. Tuteja N. (2011a). A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol. Biol. 76, 19–34. 10.1007/s11103-011-9758-0 21365356 [OpenAIRE] [PubMed] [DOI]

Dang H. Q. Tran N. Q. Tuteja R. Tuteja N. (2011b). Promoter of a salinity and cold stress-induced MCM6 DNA helicase from pea. Plant Signal. Behav. 6, 1006–1008. 10.4161/psb.6.7.15502 21691155 [OpenAIRE] [PubMed] [DOI]

50 references, page 1 of 4
Abstract
Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for bet...
Subjects
Medical Subject Headings: food and beveragesfungi
free text keywords: Plant Science, Original Research, agroinfiltration, rice, helicases, OsXPB2 promoter, abiotic stress, tobacco, Plant culture, SB1-1110
50 references, page 1 of 4

Abe H. Yamaguchi-Shinozaki K. Urao T. Iwasaki T. Hosokawa D. Shinozaki K. (1997). Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868. 10.1105/tpc.9.10.1859 9368419 [OpenAIRE] [PubMed] [DOI]

Abel S. Theologis A. (1996). Early genes and auxin action. Plant Physiol. 111, 9–17. 10.1104/pp.111.1.9 8685277 [OpenAIRE] [PubMed] [DOI]

Banu S. A. Huda K. M. K. Tuteja N. (2014). Isolation and functional characterization of the promoter of a DEAD-box helicase Psp68 using Agrobacterium-mediated transient assay. Plant Signal. Behav. 9:e28992. 10.4161/psb.28992 24785194 [OpenAIRE] [PubMed] [DOI]

Battraw M. J. Hall T. C. (1990). Histochemical analysis of CaMV 35S promoter-glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol. 15, 527–538. 10.1007/BF00017828 2102372 [OpenAIRE] [PubMed] [DOI]

Boyko A. Blevins T. Yao Y. Golubov A. Bilichak A. Ilnytskyy Y. . (2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE 5:e9514. 10.1371/journal.pone.0009514 20209086 [OpenAIRE] [PubMed] [DOI]

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. 10.1016/0003-2697(76)90527-3 942051 [OpenAIRE] [PubMed] [DOI]

Brosché M. Schuler M. A. Kalbina I. Connor L. Strid A. (2002). Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem. Photobiol. Sci. 1, 656–664. 10.1039/B202659G 12665302 [OpenAIRE] [PubMed] [DOI]

Brossa R. Lopez-Carbonell M. Jubany-Mari T. Alegre L. (2011). Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J. Plant Growth Regul. 30, 322–333. 10.1007/s00344-011-9194-z [OpenAIRE] [DOI]

Capell T. Escobar C. Liu H. Burtin D. Lepri O. Christou P. (1998). Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Genet. 97, 246–254. 10.1007/s001220050892 [OpenAIRE] [DOI]

Chandler P. M. Robertson M. (1994). Gene-expression regulated by abscisic-acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 113–141. 10.1146/annurev.pp.45.060194.000553 [OpenAIRE] [DOI]

Chinnusamy V. Ohta M. Kanrar S. Lee B.-H. Hong X. Agarwal M. . (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043–1054. 10.1101/gad.1077503 12672693 [OpenAIRE] [PubMed] [DOI]

Clarke S. M. Cristescu S. M. Miersch O. Harren F. J. M. Wasternack C. (2009). Jasmonates act with salicylic acid to confer basal thermo tolerance in Arabidopsis thaliana. New Phytol. 182, 175–187. 10.1111/j.1469-8137.2008.02735.x 19140948 [OpenAIRE] [PubMed] [DOI]

Costa R. M. Morgante P. G. Berra C. M. Nakabashi M. Bruneau D. Bouchez D. . (2001). The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J. 28, 385–395. 10.1046/j.1365-313X.2001.01162.x 11737776 [OpenAIRE] [PubMed] [DOI]

Dang H. Q. Tran N. Q. Gill S. S. Tuteja R. Tuteja N. (2011a). A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol. Biol. 76, 19–34. 10.1007/s11103-011-9758-0 21365356 [OpenAIRE] [PubMed] [DOI]

Dang H. Q. Tran N. Q. Tuteja R. Tuteja N. (2011b). Promoter of a salinity and cold stress-induced MCM6 DNA helicase from pea. Plant Signal. Behav. 6, 1006–1008. 10.4161/psb.6.7.15502 21691155 [OpenAIRE] [PubMed] [DOI]

50 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue