publication . Article . Other literature type . 2018

Improving the Electrochemical Performance of LiNi0.80Co0.15Al0.05O2 in Lithium Ion Batteries by LiAlO2 Surface Modification

Song, Chunhua; Wang, Wenge; Peng, Huili; Wang, Ying; Zhao, Chenglong; Zhang, Huibin; Tang, Qiwei; Lv, Jinzhao; Du, Xianjun; Dou, Yanmeng;
Open Access
  • Published: 05 Mar 2018 Journal: Applied Sciences, volume 8, page 378 (eissn: 2076-3417, Copyright policy)
  • Publisher: MDPI AG
Abstract
LiNi0.80Co0.15Al0.05O2 (NCA) as a lithium ion battery cathode material has received attention for its highly specific capacity and excellent low temperature performance. However, the disadvantages of its high surface lithium compound residues and high pH value have influenced its processing performance and limited its application. This paper uses a facile method to modify NCA through LiAlO2 coating. The results showed that when the molar ratio of Al(NO3)3·9H2O and lithium compound residues at the surface of NCA cathode material was 0.25:1, the pH of the cathode material decreased from 12.70 to 11.80 and the surface lithium compound residues decreased from 3.99% ...
Subjects
free text keywords: Engineering, business.industry, business, Lithium, chemistry.chemical_element, chemistry, Voltage range, Coating, engineering.material, Electronic engineering, Molar ratio, Inorganic chemistry, Lithium-ion battery, Surface modification, Ion, Electrochemistry, LiNi0.80Co0.15Al0.05O2, LiAlO2 coating, lithium compound residues, pH value, capacity retention, Technology, T, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, QD1-999

Zhou, P.; Zhang, Z.; Meng, H.; Lu, Y.; Cao, J.; Cheng, F.; Tao, Z.; Chen, J. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. Nanoscale 2016, 8, 19263-19269. [CrossRef] [PubMed] Xu, Y.; Li, X.; Wang, Z.; Guo, H.; Huang, B. Structure and electrochemical performance of TiO2-coated LiNi0.80Co0.15Al0.05O2 cathode material. Mater. Lett. 2015, 143, 151-154. [CrossRef] Ruan, Z.; Zhu, Y.; Teng, X. Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2. J. Mater. Sci. 2016, 51, 1400-1408. [CrossRef] Kleiner, K.; Melke, J.; Merz, M.; Jakes, P.; Nagel, P.; Schuppler, S.; Liebau, V.; Ehrenberg, H. Unraveling the 10. Zhu, L.; Liu, Y.; Wu, W.; Wu, X.; Tang, W.; Wu, Y. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 15156-15162. [CrossRef] 11. Li, X.; Xie, Z.; Liu, W.; Ge, W.; Wang, H.; Qu, M. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta 2015, 174, 1122-1130. [CrossRef] 12. Li, L.; Chen, Z.; Zhang, Q.; Xu, M.; Zhou, X.; Zhu, H.; Zhang, K. A hydrolysis-hydrothermal route for the 14. Lee, M.J.; Noh, M.; Park, M.H.; Jo, M.; Kim, H.; Nam, H.; Cho, J. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures. J. Mater.

Chem. A 2015, 3, 13453-13460. [CrossRef] 15. Tran, H.Y.; Ta¨ubert, C.; Fleischhammer, M.; Axmann, P.; K u¨ppers, L.; Wohlfahrt-Mehrens, M.

LiMn2O4Spinel/LiNi0.8Co0.15Al0.05O2 Blends as Cathode Materials for Lithium-Ion Batteries.

J. Electrochem. Soc. 2011, 158, A556-A561. [CrossRef] 16. Cho, Y.; Cho, J. Significant Improvement of LiNi0.8Co0.15Al0.05O2 Cathodes at 60 C by SiO2 Dry Coating for Li-Ion Batteries. J. Electrochem. Soc. 2010, 157, A625-A629. [CrossRef] 17. Chen, Y.; Li, P.; Zhao, S.; Zhuang, Y.; Zhao, S.; Zhou, Q.; Zheng, J. Influence of integrated microstructure on the performance of LiNi0.8Co0.15Al0.05O2 as a cathodic material for lithium ion batteries. RSC Adv. 2017, 7, 29233-29239. [CrossRef] 18. Wu, F.; Wang, M.; Su, W.; Chen, S.; Xu, B. Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. J. Power Sources 2009, 191, 628-632. [CrossRef] 19. Lee, D.J.; Scrosati, B.; Sun, Y.K. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 C. J. Power Sources 2011, 196, 7742-7746. [CrossRef] 20. Aurbach, D.; Levi, M.D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L. Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides.

J. Electrochem. Soc. 1988, 145, 3024-3034. [CrossRef] 21. Bai, Y.; Wang, X.; Zhang, X.; Shu, H.; Yang, X.; Hu, B.; Wei, Q.; Wu, H.; Song, Y. The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. Electrochim. Acta 2013, 109, 355-364.

[CrossRef] 22. Liu, T.; Garsuch, A.; Chesneau, F.; Lucht, B.L. Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages. J. Power Sources 2014, 269, 920-926. [CrossRef] [OpenAIRE]

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2018

Improving the Electrochemical Performance of LiNi0.80Co0.15Al0.05O2 in Lithium Ion Batteries by LiAlO2 Surface Modification

Song, Chunhua; Wang, Wenge; Peng, Huili; Wang, Ying; Zhao, Chenglong; Zhang, Huibin; Tang, Qiwei; Lv, Jinzhao; Du, Xianjun; Dou, Yanmeng;