publication . Article . 2018

Generalized Growth of Estuarine, Household and Clinical Isolates of Pseudomonas aeruginosa

Kelly E. Diaz; Susanna K. Remold; Ogochukwu Onyiri; Maura Bozeman; Peter A. Raymond; Paul E. Turner; Paul E. Turner;
Open Access English
  • Published: 01 Feb 2018 Journal: Frontiers in Microbiology, volume 9 (eissn: 1664-302X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen of particular concern to immune-compromised people, such as cystic fibrosis patients and burn victims. These bacteria grow in built environments including hospitals and households, and in natural environments such as rivers and estuaries. However, there is conflicting evidence whether recent environments like the human lung and open ocean affect P. aeruginosa growth performance in alternate environments. We hypothesized that bacteria recently isolated from dissimilar habitats should grow differently in media containing artificial versus natural resources. To test this idea, we examined growth of P. aeruginosa i...
Persistent Identifiers
Subjects
Medical Subject Headings: fungi
free text keywords: Microbiology, Original Research, bacteria, evolutionary ecology, fitness, genotype by environment interaction, opportunistic pathogen, Microbiology (medical), lcsh:Microbiology, lcsh:QR1-502, Habitat, Population density, Zoology, Generalist and specialist species, Biology, Estuary, geography.geographical_feature_category, geography, Pseudomonas aeruginosa, medicine.disease_cause, medicine, biology.organism_classification, Gene–environment interaction
Funded by
NSF| Roles of dispersal and selection in structuring microbial communities and populations
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0950361
  • Funding stream: Directorate for Biological Sciences | Division of Environmental Biology
47 references, page 1 of 4

Aagot N.Nybroe O.Nielsen P.Johnsen K. (2001). An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media. Appl. Environ. Microbiol. 67 5233–5239. 10.1128/AEM.67.11.5233-5239.2001 11679350 [OpenAIRE] [PubMed] [DOI]

Bazire A.Diab F.Jebbar M.Haras D. (2007). Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa. J. Ind. Microbiol. Biotechnol. 34 5–8. 10.1007/s10295-006-0087-2 16491361 [OpenAIRE] [PubMed] [DOI]

Bozeman M. M. (2012). Implications of the Quality, Quantity, and ‘Stickiness’ of Dissolved Organic Matter on Aquatic Ecosystem Function. Ph.D. thesis, Yale University New Haven, CT 131.

Buchanan R. L.Whiting R. C.Damert W. C. (1997). When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 14 313–326. 10.1006/fmic.1997.0125 [OpenAIRE] [DOI]

Buck J. D. (1974). Effects of medium composition on the recovery of bacteria from sea water. J. Exp. Mar. Biol. Ecol. 15 25–34. 10.1016/0022-0981(74)90060-4 18515474 [OpenAIRE] [PubMed] [DOI]

Burns J. L.Gibson R. L.McNamara S.Yim D.Emerson J.Rosenfeld M. (2001). Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J. Infect. Dis. 183 444–452. 10.1086/318075 11133376 [OpenAIRE] [PubMed] [DOI]

Chan B. K.Sistrom M.Wertz J. E.Kortright K. E.Narayan D.Turner P. E. (2016). Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6:26717. 10.1038/srep26717 27225966 [OpenAIRE] [PubMed] [DOI]

Ciofu O.Mandsberg L. F.Bjarnsholt T.Wasserman T.Høiby N. (2010). Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 156 1108–1119. 10.1099/mic.0.033993-0 20019078 [OpenAIRE] [PubMed] [DOI]

D’Argenio D. A.Wu M.Hoffman L. R.Kulasekara H. D.Déziel E.Smith E. E. (2007). Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 64 512–533. 10.1111/j.1365-2958.2007.05678.x 17493132 [OpenAIRE] [PubMed] [DOI]

Delaney N. F.Kaczmarek M. E.Marx C. J. (submitted). Evaluating sources of bias when estimating microbial growth rates in microtiter plates and development of the open-source program Curve Fitter.

France M. T.Remold S. K. (2015). Interference competition among household strains of Pseudomonas. Microb. Ecol. 72 821–830. 10.1007/s00248-015-0652-1 26276409 [OpenAIRE] [PubMed] [DOI]

Friman V.-P.Ghoul M.Molin S.Johansen H. K.Buckling A. (2013). Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies. PLoS One 8:e75380. 10.1371/journal.pone.0075380 24069407 [OpenAIRE] [PubMed] [DOI]

Frimmersdorf E.Horatzek S.Pelnikevich A.Wiehlmann L.Schomburg D. (2010). How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ. Microbiol. 12 1734–1747. 10.1111/j.1462-2920.2010.02253.x 20553553 [OpenAIRE] [PubMed] [DOI]

Ghoul M.West S. A.Johansen H. K.Molin S.Harrison O. B.Maiden M. C. J. (2015). Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc. R. Soc. B 282:20150972. 10.1098/rspb.2015.0972 26311664 [OpenAIRE] [PubMed] [DOI]

Hattori T. (1980). A note on the effect of different types of agar on plate count of oligotrophic bacteria in soil. J. Gen. Appl. Microbiol. 26 373–374. 10.2323/jgam.26.373 [OpenAIRE] [DOI]

47 references, page 1 of 4
Any information missing or wrong?Report an Issue