publication . Article . 2017

Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

Lise Madsen; Lise Madsen; Lise Madsen; Lene S. Myrmel; Even Fjære; Bjørn Liaset; Karsten Kristiansen; Karsten Kristiansen;
Open Access
  • Published: 01 Dec 2017
  • Publisher: Frontiers Media SA
  • Country: Denmark
Abstract
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood...
Subjects
Medical Subject Headings: digestive system
free text keywords: Physiology (medical), Physiology, gut microbiota, dietary proteins, diet, protein source, mouse models, dietary fats, /dk/atira/pure/researchoutput/pubmedpublicationtype/D016428, Journal Article, /dk/atira/pure/researchoutput/pubmedpublicationtype/D016454, Review, QP1-981, Obesity, medicine.disease, medicine, Food science, Dietary protein, Energy metabolism, Gut flora, biology.organism_classification, biology, Dietary factors, Metabolism, Amino acid composition, Animal studies
Related Organizations
150 references, page 1 of 10

Aadland E. K.Graff I. E.Lavigne C.Eng O.Paquette M.Holthe A.. (2016). Lean seafood intake reduces postprandial C-peptide and lactate concentrations in healthy adults in a randomized controlled trial with a crossover design. J. Nutr.146, 1027–1034. 10.3945/jn.115.229278 27099232 [OpenAIRE] [PubMed] [DOI]

Aadland E. K.Lavigne C.Graff I. E.Eng O.Paquette M.Holthe A.. (2015). Lean-seafood intake reduces cardiovascular lipid risk factors in healthy subjects: results from a randomized controlled trial with a crossover design. Am. J. Clin. Nutr.102, 582–592. 10.3945/ajcn.115.112086 26224298 [OpenAIRE] [PubMed] [DOI]

Alvheim A. R.Torstensen B. E.Lin Y. H.Lillefosse H. H.Lock E. J.Madsen L.. (2013). Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice. Br. J. Nutr.109, 1508–1517. 10.1017/S0007114512003364 22883314 [OpenAIRE] [PubMed] [DOI]

An H. M.Park S. Y.Lee D. K.Kim J. R.Cha M. K.Lee S. W.. (2011). Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis.10:116. 10.1186/1476-511X-10-116 21745411 [OpenAIRE] [PubMed] [DOI]

Arsenescu V.Arsenescu R. I.King V.Swanson H.Cassis L. A. (2008). Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ. Health Perspect. 116, 761–768. 10.1289/ehp.10554 18560532 [OpenAIRE] [PubMed] [DOI]

Arumugam M.Raes J.Pelletier E.Le Paslier D.Yamada T.Mende D. R.. (2011). Enterotypes of the human gut microbiome. Nature 473, 174–180. 10.1038/nature09944 21508958 [OpenAIRE] [PubMed] [DOI]

Astrup A.Raben A.Geiker N. (2015). The role of higher protein diets in weight control and obesity-related comorbidities. Int. J. Obes. 39, 721–726. 10.1038/ijo.2014.216 25540980 [OpenAIRE] [PubMed] [DOI]

Baothman O. A.Zamzami M. A.Taher I.Abubaker J.Abu-Farha M. (2016). The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 15:108. 10.1186/s12944-016-0278-4 27317359 [OpenAIRE] [PubMed] [DOI]

Batetta B.Griinari M.Carta G.Murru E.Ligresti A.Cordeddu L.. (2009). Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J. Nutr.139, 1495–1501. 10.3945/jn.109.104844 19549757 [OpenAIRE] [PubMed] [DOI]

Bellissimo N.Akhavan T. (2015). Effect of macronutrient composition on short-term food intake an d weight loss. Adv. Nutr. 6, 302S–308S. 10.3945/an.114.006957 25979503 [OpenAIRE] [PubMed] [DOI]

Bjermo H.Iggman D.Kullberg J.Dahlman I.Johansson L.Persson L.. (2012). Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr.95, 1003–1012. 10.3945/ajcn.111.030114 22492369 [OpenAIRE] [PubMed] [DOI]

Boirie Y.Dangin M.Gachon P.Vasson M. P.Maubois J. L.Beaufrere B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. U.S.A. 94, 14930–14935. 10.1073/pnas.94.26.14930 9405716 [OpenAIRE] [PubMed] [DOI]

Brandsch C.Shukla A.Hirche F.Stangl G. I.Eder K. (2006). Effect of proteins from beef, pork, and turkey meat on plasma and liver lipids of rats compared with casein and soy protein. Nutrition 22, 1162–1170. 10.1016/j.nut.2006.06.009 16979322 [OpenAIRE] [PubMed] [DOI]

Broeders E. P.Nascimento E. B.Havekes B.Brans B.Roumans K. H.Tailleux A.. (2015). The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab.22, 418–426. 10.1016/j.cmet.2015.07.002 26235421 [OpenAIRE] [PubMed] [DOI]

Caesar R.Tremaroli V.Kovatcheva-Datchary P.Cani P. D.Backhed F. (2015). Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668. 10.1016/j.cmet.2015.07.026 26321659 [OpenAIRE] [PubMed] [DOI]

150 references, page 1 of 10
Abstract
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood...
Subjects
Medical Subject Headings: digestive system
free text keywords: Physiology (medical), Physiology, gut microbiota, dietary proteins, diet, protein source, mouse models, dietary fats, /dk/atira/pure/researchoutput/pubmedpublicationtype/D016428, Journal Article, /dk/atira/pure/researchoutput/pubmedpublicationtype/D016454, Review, QP1-981, Obesity, medicine.disease, medicine, Food science, Dietary protein, Energy metabolism, Gut flora, biology.organism_classification, biology, Dietary factors, Metabolism, Amino acid composition, Animal studies
Related Organizations
150 references, page 1 of 10

Aadland E. K.Graff I. E.Lavigne C.Eng O.Paquette M.Holthe A.. (2016). Lean seafood intake reduces postprandial C-peptide and lactate concentrations in healthy adults in a randomized controlled trial with a crossover design. J. Nutr.146, 1027–1034. 10.3945/jn.115.229278 27099232 [OpenAIRE] [PubMed] [DOI]

Aadland E. K.Lavigne C.Graff I. E.Eng O.Paquette M.Holthe A.. (2015). Lean-seafood intake reduces cardiovascular lipid risk factors in healthy subjects: results from a randomized controlled trial with a crossover design. Am. J. Clin. Nutr.102, 582–592. 10.3945/ajcn.115.112086 26224298 [OpenAIRE] [PubMed] [DOI]

Alvheim A. R.Torstensen B. E.Lin Y. H.Lillefosse H. H.Lock E. J.Madsen L.. (2013). Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice. Br. J. Nutr.109, 1508–1517. 10.1017/S0007114512003364 22883314 [OpenAIRE] [PubMed] [DOI]

An H. M.Park S. Y.Lee D. K.Kim J. R.Cha M. K.Lee S. W.. (2011). Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis.10:116. 10.1186/1476-511X-10-116 21745411 [OpenAIRE] [PubMed] [DOI]

Arsenescu V.Arsenescu R. I.King V.Swanson H.Cassis L. A. (2008). Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ. Health Perspect. 116, 761–768. 10.1289/ehp.10554 18560532 [OpenAIRE] [PubMed] [DOI]

Arumugam M.Raes J.Pelletier E.Le Paslier D.Yamada T.Mende D. R.. (2011). Enterotypes of the human gut microbiome. Nature 473, 174–180. 10.1038/nature09944 21508958 [OpenAIRE] [PubMed] [DOI]

Astrup A.Raben A.Geiker N. (2015). The role of higher protein diets in weight control and obesity-related comorbidities. Int. J. Obes. 39, 721–726. 10.1038/ijo.2014.216 25540980 [OpenAIRE] [PubMed] [DOI]

Baothman O. A.Zamzami M. A.Taher I.Abubaker J.Abu-Farha M. (2016). The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 15:108. 10.1186/s12944-016-0278-4 27317359 [OpenAIRE] [PubMed] [DOI]

Batetta B.Griinari M.Carta G.Murru E.Ligresti A.Cordeddu L.. (2009). Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J. Nutr.139, 1495–1501. 10.3945/jn.109.104844 19549757 [OpenAIRE] [PubMed] [DOI]

Bellissimo N.Akhavan T. (2015). Effect of macronutrient composition on short-term food intake an d weight loss. Adv. Nutr. 6, 302S–308S. 10.3945/an.114.006957 25979503 [OpenAIRE] [PubMed] [DOI]

Bjermo H.Iggman D.Kullberg J.Dahlman I.Johansson L.Persson L.. (2012). Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr.95, 1003–1012. 10.3945/ajcn.111.030114 22492369 [OpenAIRE] [PubMed] [DOI]

Boirie Y.Dangin M.Gachon P.Vasson M. P.Maubois J. L.Beaufrere B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. U.S.A. 94, 14930–14935. 10.1073/pnas.94.26.14930 9405716 [OpenAIRE] [PubMed] [DOI]

Brandsch C.Shukla A.Hirche F.Stangl G. I.Eder K. (2006). Effect of proteins from beef, pork, and turkey meat on plasma and liver lipids of rats compared with casein and soy protein. Nutrition 22, 1162–1170. 10.1016/j.nut.2006.06.009 16979322 [OpenAIRE] [PubMed] [DOI]

Broeders E. P.Nascimento E. B.Havekes B.Brans B.Roumans K. H.Tailleux A.. (2015). The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab.22, 418–426. 10.1016/j.cmet.2015.07.002 26235421 [OpenAIRE] [PubMed] [DOI]

Caesar R.Tremaroli V.Kovatcheva-Datchary P.Cani P. D.Backhed F. (2015). Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668. 10.1016/j.cmet.2015.07.026 26321659 [OpenAIRE] [PubMed] [DOI]

150 references, page 1 of 10
Any information missing or wrong?Report an Issue