publication . Article . Other literature type . 2018

Study of Interactions of an Anticancer Drug Neratinib With Bovine Serum Albumin: Spectroscopic and Molecular Docking Approach.

Tanveer A. Wani; Ahmed H. Bakheit; Ahmed H. Bakheit; M. A. Abounassif; Seema Zargar;
Open Access
  • Published: 07 Mar 2018 Journal: Frontiers in Chemistry, volume 6 (eissn: 2296-2646, Copyright policy)
  • Publisher: Frontiers Media SA
Abstract
Binding of therapeutic agents to plasma proteins, particularly to serum albumin, provides valuable information in the drug development. This study was designed to evaluate the binding interaction of neratinib with bovine serum albumin (BSA). Neratinib blocks HER2 signaling and is effective in trastuzumab-resistant breast cancer treatment. Spectrofluorometric, UV spectrophotometric, and fourier transform infrared (FT-IR) and molecular docking experiments were performed to study this interaction. The fluorescence of BSA is attributed to the presence of tryptophan (Trp) residues. The fluorescence of BSA in presence of neratinib was studied using the excitation wave...
Subjects
free text keywords: General Chemistry, Human serum albumin, medicine.drug, medicine, Chemistry, Serum albumin, biology.protein, biology, Hydrogen bond, Fluorescence, Neratinib, Biophysics, Bovine serum albumin, Binding constant, Docking (molecular), quenching, QD1-999, Original Research
Related Organizations
34 references, page 1 of 3

Albert D. H.Tapang P.Magoc T. J.Pease L. J.Reuter D. R.Wei R. Q.. (2006). Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol. Cancer Ther.5, 995–1006. 10.1158/1535-7163.MCT-05-0410 16648571 [PubMed] [DOI]

Ali H. I.Fujita T.Akaho E.Nagamatsu T. (2010). A comparative study of AutoDock and PMF scoring performances, and SAR of 2-substituted pyrazolotriazolopyrimidines and 4-substituted pyrazolopyrimidines as potent xanthine oxidase inhibitors. J. Comput. Aided Mol. Des. 24, 57–75. 10.1007/s10822-009-9314-z 20039101 [OpenAIRE] [PubMed] [DOI]

Berezhkovskiy L. M. (2007). On the calculation of the concentration dependence of drug binding to plasma proteins with multiple binding sites of different affinities: determination of the possible variation of the unbound drug fraction and calculation of the number of binding sites of the protein. J. Pharm. Sci. 96, 249–257. 10.1002/jps.20777 17051587 [OpenAIRE] [PubMed] [DOI]

Bose P.Ozer H. (2009). Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin. Investig. Drugs 18, 1735–1751. 10.1517/13543780903305428 19780706 [OpenAIRE] [PubMed] [DOI]

Burstein H. J.Sun Y.Dirix L. Y.Jiang Z.Paridaens R.Tan A. R.. (2010). Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol.28, 1301–1307. 10.1200/JCO.2009.25.8707 20142587 [PubMed] [DOI]

Chamani J.Heshmati M. (2008). Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: spectroscopic and calorimetric approaches. J. Colloid Interface Sci. 322, 119–127. 10.1016/j.jcis.2008.03.001 18405913 [OpenAIRE] [PubMed] [DOI]

Chandrasekaran A.Shen L.Lockhead S.Oganesian A.Wang J.Scatina J. (2010). Reversible covalent binding of neratinib to human serum albumin in vitro. Drug Metab. Lett. 4, 220–227. 10.2174/187231210792928206 20690900 [OpenAIRE] [PubMed] [DOI]

Chi Z.Liu R.Teng Y.Fang X.Gao C. (2010). Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. J. Agric. Food Chem. 58, 10262–10269. 10.1021/jf101417w 20799712 [OpenAIRE] [PubMed] [DOI]

Feldinger K.Kong A. (2015). Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer. 7, 147–162. 10.2147/BCTT.S54414. 26089701 [OpenAIRE] [PubMed] [DOI]

He L. L.Wang X.Liu B.Wang J.Sun Y. G. (2010). Interaction between ranitidine hydrochloride and bovine serum albumin in aqueous solution. J. Solution Chem. 39, 654–664. 10.1007/s10953-010-9537-6 [OpenAIRE] [DOI]

He X. M.Carter D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature 358, 209–215. 10.1038/358209a0 1630489 [OpenAIRE] [PubMed] [DOI]

Hu Y. J.Liu Y.Wang J. B.Xiao X. H.Qu S. S. (2004). Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J. Pharm. Biomed. Anal. 36, 915–919. 10.1016/j.jpba.2004.08.021 15533690 [OpenAIRE] [PubMed] [DOI]

Iqbal N.Iqbal N. (2014). Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol. Biol. Int. 2014:852748. 10.1155/2014/852748 25276427 [OpenAIRE] [PubMed] [DOI]

Jahanban-Esfahlan A.Panahi-Azar V.Sajedi S. (2015). Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers 103, 638–645. 10.1002/bip.22697 26139573 [OpenAIRE] [PubMed] [DOI]

Kandagal P. B.Ashoka S.Seetharamappa J.Shaikh S. M.Jadegoud Y.Ijare O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J. Pharm. Biomed. Anal. 41, 393–399. 10.1016/j.jpba.2005.11.037 16413740 [OpenAIRE] [PubMed] [DOI]

34 references, page 1 of 3
Abstract
Binding of therapeutic agents to plasma proteins, particularly to serum albumin, provides valuable information in the drug development. This study was designed to evaluate the binding interaction of neratinib with bovine serum albumin (BSA). Neratinib blocks HER2 signaling and is effective in trastuzumab-resistant breast cancer treatment. Spectrofluorometric, UV spectrophotometric, and fourier transform infrared (FT-IR) and molecular docking experiments were performed to study this interaction. The fluorescence of BSA is attributed to the presence of tryptophan (Trp) residues. The fluorescence of BSA in presence of neratinib was studied using the excitation wave...
Subjects
free text keywords: General Chemistry, Human serum albumin, medicine.drug, medicine, Chemistry, Serum albumin, biology.protein, biology, Hydrogen bond, Fluorescence, Neratinib, Biophysics, Bovine serum albumin, Binding constant, Docking (molecular), quenching, QD1-999, Original Research
Related Organizations
34 references, page 1 of 3

Albert D. H.Tapang P.Magoc T. J.Pease L. J.Reuter D. R.Wei R. Q.. (2006). Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol. Cancer Ther.5, 995–1006. 10.1158/1535-7163.MCT-05-0410 16648571 [PubMed] [DOI]

Ali H. I.Fujita T.Akaho E.Nagamatsu T. (2010). A comparative study of AutoDock and PMF scoring performances, and SAR of 2-substituted pyrazolotriazolopyrimidines and 4-substituted pyrazolopyrimidines as potent xanthine oxidase inhibitors. J. Comput. Aided Mol. Des. 24, 57–75. 10.1007/s10822-009-9314-z 20039101 [OpenAIRE] [PubMed] [DOI]

Berezhkovskiy L. M. (2007). On the calculation of the concentration dependence of drug binding to plasma proteins with multiple binding sites of different affinities: determination of the possible variation of the unbound drug fraction and calculation of the number of binding sites of the protein. J. Pharm. Sci. 96, 249–257. 10.1002/jps.20777 17051587 [OpenAIRE] [PubMed] [DOI]

Bose P.Ozer H. (2009). Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin. Investig. Drugs 18, 1735–1751. 10.1517/13543780903305428 19780706 [OpenAIRE] [PubMed] [DOI]

Burstein H. J.Sun Y.Dirix L. Y.Jiang Z.Paridaens R.Tan A. R.. (2010). Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol.28, 1301–1307. 10.1200/JCO.2009.25.8707 20142587 [PubMed] [DOI]

Chamani J.Heshmati M. (2008). Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: spectroscopic and calorimetric approaches. J. Colloid Interface Sci. 322, 119–127. 10.1016/j.jcis.2008.03.001 18405913 [OpenAIRE] [PubMed] [DOI]

Chandrasekaran A.Shen L.Lockhead S.Oganesian A.Wang J.Scatina J. (2010). Reversible covalent binding of neratinib to human serum albumin in vitro. Drug Metab. Lett. 4, 220–227. 10.2174/187231210792928206 20690900 [OpenAIRE] [PubMed] [DOI]

Chi Z.Liu R.Teng Y.Fang X.Gao C. (2010). Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. J. Agric. Food Chem. 58, 10262–10269. 10.1021/jf101417w 20799712 [OpenAIRE] [PubMed] [DOI]

Feldinger K.Kong A. (2015). Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer. 7, 147–162. 10.2147/BCTT.S54414. 26089701 [OpenAIRE] [PubMed] [DOI]

He L. L.Wang X.Liu B.Wang J.Sun Y. G. (2010). Interaction between ranitidine hydrochloride and bovine serum albumin in aqueous solution. J. Solution Chem. 39, 654–664. 10.1007/s10953-010-9537-6 [OpenAIRE] [DOI]

He X. M.Carter D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature 358, 209–215. 10.1038/358209a0 1630489 [OpenAIRE] [PubMed] [DOI]

Hu Y. J.Liu Y.Wang J. B.Xiao X. H.Qu S. S. (2004). Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J. Pharm. Biomed. Anal. 36, 915–919. 10.1016/j.jpba.2004.08.021 15533690 [OpenAIRE] [PubMed] [DOI]

Iqbal N.Iqbal N. (2014). Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol. Biol. Int. 2014:852748. 10.1155/2014/852748 25276427 [OpenAIRE] [PubMed] [DOI]

Jahanban-Esfahlan A.Panahi-Azar V.Sajedi S. (2015). Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers 103, 638–645. 10.1002/bip.22697 26139573 [OpenAIRE] [PubMed] [DOI]

Kandagal P. B.Ashoka S.Seetharamappa J.Shaikh S. M.Jadegoud Y.Ijare O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J. Pharm. Biomed. Anal. 41, 393–399. 10.1016/j.jpba.2005.11.037 16413740 [OpenAIRE] [PubMed] [DOI]

34 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue