Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia
- Published: 01 Mar 2018
- Publisher: Frontiers Media SA
- McMaster University Canada
Alcayaga C.Varas R.Valdés V.Cerpa V.Arroyo J.Iturriaga R.. (2007). ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons. Brain Res.1131, 60–67. 10.1016/j.brainres.2006.11.012 17184746 [OpenAIRE] [PubMed] [DOI]
Alcayaga J.Varas R.Arroyo J.Iturriaga R.Zapata P. (1999). Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Res. 831, 97–103. 10.1016/S0006-8993(99)01402-X 10411987 [PubMed] [DOI]
Almaraz L.Wang Z. Z.Stensaas L. J.Fidone S. J. (1993). Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body. Biol. Signals 2, 16–26. 10.1159/000109474 8102579 [OpenAIRE] [PubMed] [DOI]
Augusto E.Matos M.Sévigny J.El-Tayeb A.Bynoe M. S.Müller C. E.. (2013). Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J. Neurosci.33, 11390–11399. 10.1523/JNEUROSCI.5817-12.2013 23843511 [OpenAIRE] [PubMed] [DOI]
Bazargani N.Attwell D. (2016). Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19, 182–189. 10.1038/nn.4201 26814587 [OpenAIRE] [PubMed] [DOI]
Benot A. R.Lopez-Barneo J. (1990). Feedback inhibition of Ca 2+ currents by dopamine in glomus cells of the carotid body. Eur. J. Neurosci. 2, 809–812. 10.1111/j.1460-9568.1990.tb00473.x 12106283 [OpenAIRE] [PubMed] [DOI]
Biel M.Wahl-Schott C.Michalakis S.Zong X. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885. 10.1152/physrev.00029.2008 19584315 [OpenAIRE] [PubMed] [DOI]
Buckler K. J. (2015). TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch. 467, 1013–1025. 10.1007/s00424-015-1689-1 25623783 [OpenAIRE] [PubMed] [DOI]
Buttigieg J.Nurse C. A. (2004). Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body. Biochem. Biophys. Res. Commun. 322, 82–87. 10.1016/j.bbrc.2004.07.081 15313176 [OpenAIRE] [PubMed] [DOI]
Carroll J. L.Agarwal A.Donnelly D. F.Kim I. (2012). Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats. Adv. Exp. Med. Biol. 758, 249–253. 10.1007/978-94-007-4584-1_34 23080169 [OpenAIRE] [PubMed] [DOI]
Carro ll J. L.Boyle K. M.Wasicko M. J.Sterni L. M. (2005). Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L910–L916. 10.1152/ajplung.00414.2003 15681393 [OpenAIRE] [PubMed] [DOI]
Chang A. J. (2017). Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J. Appl. Physiol. 123, 1335–1343. 10.1152/japplphysiol.00398.2017 28819004 [OpenAIRE] [PubMed] [DOI]
Chen J.He L.Dinger B.Stensaas L.Fidone S. (2002). Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L1314–L1323. 10.1152/ajplung.00454.2001 12003788 [OpenAIRE] [PubMed] [DOI]
Claps A.Torrealba F. (1988). The carotid body connections: a WGA-HRP study in the cat. Brain Res. 455, 123–133. 10.1016/0006-8993(88)90121-7 2458164 [OpenAIRE] [PubMed] [DOI]
Conde S. V.Gonzalez C.Batuca J. R.Monteiro E. C.Obeso A. (2008). An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 107, 1369–1381. 10.1111/j.1471-4159.2008.05704.x 18823369 [OpenAIRE] [PubMed] [DOI]
- McMaster University Canada
Alcayaga C.Varas R.Valdés V.Cerpa V.Arroyo J.Iturriaga R.. (2007). ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons. Brain Res.1131, 60–67. 10.1016/j.brainres.2006.11.012 17184746 [OpenAIRE] [PubMed] [DOI]
Alcayaga J.Varas R.Arroyo J.Iturriaga R.Zapata P. (1999). Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Res. 831, 97–103. 10.1016/S0006-8993(99)01402-X 10411987 [PubMed] [DOI]
Almaraz L.Wang Z. Z.Stensaas L. J.Fidone S. J. (1993). Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body. Biol. Signals 2, 16–26. 10.1159/000109474 8102579 [OpenAIRE] [PubMed] [DOI]
Augusto E.Matos M.Sévigny J.El-Tayeb A.Bynoe M. S.Müller C. E.. (2013). Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J. Neurosci.33, 11390–11399. 10.1523/JNEUROSCI.5817-12.2013 23843511 [OpenAIRE] [PubMed] [DOI]
Bazargani N.Attwell D. (2016). Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19, 182–189. 10.1038/nn.4201 26814587 [OpenAIRE] [PubMed] [DOI]
Benot A. R.Lopez-Barneo J. (1990). Feedback inhibition of Ca 2+ currents by dopamine in glomus cells of the carotid body. Eur. J. Neurosci. 2, 809–812. 10.1111/j.1460-9568.1990.tb00473.x 12106283 [OpenAIRE] [PubMed] [DOI]
Biel M.Wahl-Schott C.Michalakis S.Zong X. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885. 10.1152/physrev.00029.2008 19584315 [OpenAIRE] [PubMed] [DOI]
Buckler K. J. (2015). TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch. 467, 1013–1025. 10.1007/s00424-015-1689-1 25623783 [OpenAIRE] [PubMed] [DOI]
Buttigieg J.Nurse C. A. (2004). Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body. Biochem. Biophys. Res. Commun. 322, 82–87. 10.1016/j.bbrc.2004.07.081 15313176 [OpenAIRE] [PubMed] [DOI]
Carroll J. L.Agarwal A.Donnelly D. F.Kim I. (2012). Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats. Adv. Exp. Med. Biol. 758, 249–253. 10.1007/978-94-007-4584-1_34 23080169 [OpenAIRE] [PubMed] [DOI]
Carro ll J. L.Boyle K. M.Wasicko M. J.Sterni L. M. (2005). Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L910–L916. 10.1152/ajplung.00414.2003 15681393 [OpenAIRE] [PubMed] [DOI]
Chang A. J. (2017). Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J. Appl. Physiol. 123, 1335–1343. 10.1152/japplphysiol.00398.2017 28819004 [OpenAIRE] [PubMed] [DOI]
Chen J.He L.Dinger B.Stensaas L.Fidone S. (2002). Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L1314–L1323. 10.1152/ajplung.00454.2001 12003788 [OpenAIRE] [PubMed] [DOI]
Claps A.Torrealba F. (1988). The carotid body connections: a WGA-HRP study in the cat. Brain Res. 455, 123–133. 10.1016/0006-8993(88)90121-7 2458164 [OpenAIRE] [PubMed] [DOI]
Conde S. V.Gonzalez C.Batuca J. R.Monteiro E. C.Obeso A. (2008). An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 107, 1369–1381. 10.1111/j.1471-4159.2008.05704.x 18823369 [OpenAIRE] [PubMed] [DOI]