publication . Other literature type . Article . 2018

Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia

Colin A. Nurse; Erin M. Leonard; Shaima Salman;
Open Access
  • Published: 01 Mar 2018
  • Publisher: Frontiers Media SA
Abstract
Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, ...
Subjects
free text keywords: Physiology, Review, carotid body, chemoreceptor type I cells, glial-like type II cells, purinergic signaling, neurotransmitters, sensory transmission, petrosal neurons, Physiology (medical), QP1-981, Biology, medicine.anatomical_structure, medicine, Purinergic signalling, Neuroscience, Peripheral chemoreceptors, Angiotensin II, Tripartite synapse, Glucose homeostasis, Homeostasis, Postsynaptic potential
Related Organizations
Funded by
CIHR
Project
  • Funder: Canadian Institutes of Health Research (CIHR)
,
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
114 references, page 1 of 8

Alcayaga C.Varas R.Valdés V.Cerpa V.Arroyo J.Iturriaga R.. (2007). ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons. Brain Res.1131, 60–67. 10.1016/j.brainres.2006.11.012 17184746 [OpenAIRE] [PubMed] [DOI]

Alcayaga J.Varas R.Arroyo J.Iturriaga R.Zapata P. (1999). Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Res. 831, 97–103. 10.1016/S0006-8993(99)01402-X 10411987 [PubMed] [DOI]

Almaraz L.Wang Z. Z.Stensaas L. J.Fidone S. J. (1993). Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body. Biol. Signals 2, 16–26. 10.1159/000109474 8102579 [OpenAIRE] [PubMed] [DOI]

Augusto E.Matos M.Sévigny J.El-Tayeb A.Bynoe M. S.Müller C. E.. (2013). Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J. Neurosci.33, 11390–11399. 10.1523/JNEUROSCI.5817-12.2013 23843511 [OpenAIRE] [PubMed] [DOI]

Bazargani N.Attwell D. (2016). Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19, 182–189. 10.1038/nn.4201 26814587 [OpenAIRE] [PubMed] [DOI]

Benot A. R.Lopez-Barneo J. (1990). Feedback inhibition of Ca 2+ currents by dopamine in glomus cells of the carotid body. Eur. J. Neurosci. 2, 809–812. 10.1111/j.1460-9568.1990.tb00473.x 12106283 [OpenAIRE] [PubMed] [DOI]

Biel M.Wahl-Schott C.Michalakis S.Zong X. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885. 10.1152/physrev.00029.2008 19584315 [OpenAIRE] [PubMed] [DOI]

Buckler K. J. (2015). TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch. 467, 1013–1025. 10.1007/s00424-015-1689-1 25623783 [OpenAIRE] [PubMed] [DOI]

Buttigieg J.Nurse C. A. (2004). Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body. Biochem. Biophys. Res. Commun. 322, 82–87. 10.1016/j.bbrc.2004.07.081 15313176 [OpenAIRE] [PubMed] [DOI]

Carroll J. L.Agarwal A.Donnelly D. F.Kim I. (2012). Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats. Adv. Exp. Med. Biol. 758, 249–253. 10.1007/978-94-007-4584-1_34 23080169 [OpenAIRE] [PubMed] [DOI]

Carro ll J. L.Boyle K. M.Wasicko M. J.Sterni L. M. (2005). Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L910–L916. 10.1152/ajplung.00414.2003 15681393 [OpenAIRE] [PubMed] [DOI]

Chang A. J. (2017). Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J. Appl. Physiol. 123, 1335–1343. 10.1152/japplphysiol.00398.2017 28819004 [OpenAIRE] [PubMed] [DOI]

Chen J.He L.Dinger B.Stensaas L.Fidone S. (2002). Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L1314–L1323. 10.1152/ajplung.00454.2001 12003788 [OpenAIRE] [PubMed] [DOI]

Claps A.Torrealba F. (1988). The carotid body connections: a WGA-HRP study in the cat. Brain Res. 455, 123–133. 10.1016/0006-8993(88)90121-7 2458164 [OpenAIRE] [PubMed] [DOI]

Conde S. V.Gonzalez C.Batuca J. R.Monteiro E. C.Obeso A. (2008). An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 107, 1369–1381. 10.1111/j.1471-4159.2008.05704.x 18823369 [OpenAIRE] [PubMed] [DOI]

114 references, page 1 of 8
Abstract
Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, ...
Subjects
free text keywords: Physiology, Review, carotid body, chemoreceptor type I cells, glial-like type II cells, purinergic signaling, neurotransmitters, sensory transmission, petrosal neurons, Physiology (medical), QP1-981, Biology, medicine.anatomical_structure, medicine, Purinergic signalling, Neuroscience, Peripheral chemoreceptors, Angiotensin II, Tripartite synapse, Glucose homeostasis, Homeostasis, Postsynaptic potential
Related Organizations
Funded by
CIHR
Project
  • Funder: Canadian Institutes of Health Research (CIHR)
,
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
114 references, page 1 of 8

Alcayaga C.Varas R.Valdés V.Cerpa V.Arroyo J.Iturriaga R.. (2007). ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons. Brain Res.1131, 60–67. 10.1016/j.brainres.2006.11.012 17184746 [OpenAIRE] [PubMed] [DOI]

Alcayaga J.Varas R.Arroyo J.Iturriaga R.Zapata P. (1999). Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Res. 831, 97–103. 10.1016/S0006-8993(99)01402-X 10411987 [PubMed] [DOI]

Almaraz L.Wang Z. Z.Stensaas L. J.Fidone S. J. (1993). Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body. Biol. Signals 2, 16–26. 10.1159/000109474 8102579 [OpenAIRE] [PubMed] [DOI]

Augusto E.Matos M.Sévigny J.El-Tayeb A.Bynoe M. S.Müller C. E.. (2013). Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J. Neurosci.33, 11390–11399. 10.1523/JNEUROSCI.5817-12.2013 23843511 [OpenAIRE] [PubMed] [DOI]

Bazargani N.Attwell D. (2016). Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19, 182–189. 10.1038/nn.4201 26814587 [OpenAIRE] [PubMed] [DOI]

Benot A. R.Lopez-Barneo J. (1990). Feedback inhibition of Ca 2+ currents by dopamine in glomus cells of the carotid body. Eur. J. Neurosci. 2, 809–812. 10.1111/j.1460-9568.1990.tb00473.x 12106283 [OpenAIRE] [PubMed] [DOI]

Biel M.Wahl-Schott C.Michalakis S.Zong X. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885. 10.1152/physrev.00029.2008 19584315 [OpenAIRE] [PubMed] [DOI]

Buckler K. J. (2015). TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch. 467, 1013–1025. 10.1007/s00424-015-1689-1 25623783 [OpenAIRE] [PubMed] [DOI]

Buttigieg J.Nurse C. A. (2004). Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body. Biochem. Biophys. Res. Commun. 322, 82–87. 10.1016/j.bbrc.2004.07.081 15313176 [OpenAIRE] [PubMed] [DOI]

Carroll J. L.Agarwal A.Donnelly D. F.Kim I. (2012). Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats. Adv. Exp. Med. Biol. 758, 249–253. 10.1007/978-94-007-4584-1_34 23080169 [OpenAIRE] [PubMed] [DOI]

Carro ll J. L.Boyle K. M.Wasicko M. J.Sterni L. M. (2005). Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L910–L916. 10.1152/ajplung.00414.2003 15681393 [OpenAIRE] [PubMed] [DOI]

Chang A. J. (2017). Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J. Appl. Physiol. 123, 1335–1343. 10.1152/japplphysiol.00398.2017 28819004 [OpenAIRE] [PubMed] [DOI]

Chen J.He L.Dinger B.Stensaas L.Fidone S. (2002). Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L1314–L1323. 10.1152/ajplung.00454.2001 12003788 [OpenAIRE] [PubMed] [DOI]

Claps A.Torrealba F. (1988). The carotid body connections: a WGA-HRP study in the cat. Brain Res. 455, 123–133. 10.1016/0006-8993(88)90121-7 2458164 [OpenAIRE] [PubMed] [DOI]

Conde S. V.Gonzalez C.Batuca J. R.Monteiro E. C.Obeso A. (2008). An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 107, 1369–1381. 10.1111/j.1471-4159.2008.05704.x 18823369 [OpenAIRE] [PubMed] [DOI]

114 references, page 1 of 8
Any information missing or wrong?Report an Issue