Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar

Preprint, Article English OPEN
Igor Prokopovich ; Alexei Popov ; Lara Pajewski ; Marian Marciniak (2017)
  • Publisher: MDPI AG
  • Journal: Remote Sensing (issn: 2072-4292)
  • Related identifiers: doi: 10.20944/PREPRINTS201712.0035.V1, doi: 10.3390/rs10010022
  • Subject: ground penetrating radar | Q | Science | time-domain analysis | Electromagnetic propagation in nonhomogeneous media; Ground penetrating radar; time-domain analysis; Earth and Planetary Sciences (all) | electromagnetic propagation in nonhomogeneous media

This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-sca... View more
  • References (37)
    37 references, page 1 of 4

    1. Benedetto, A; Pajewski, L. (Eds). Civil Engineering Applications of Ground Penetrating Radar; Springer International, Book Series: “Springer Transactions in Civil and Environmental Engineering”, New Delhi, India, April 2015; 385 p.; ISBN 978-3-319-04813-0; doi: 10.1007/978-3-319-04813-0.

    2. Persico, R. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing. Wiley-IEEE Press, June 2014; 392 p.; ISBN: 978-1-118-30500-3.

    3. Giannopoulos, A. Modelling ground penetrating radar by GprMax. Constr. Building Materials 2005, Vol. 19, No. 10, pp. 755-762; doi: 10.1016/j.conbuildmat.2005.06.007.

    4. Warren, C.; Giannopoulos, A.; Giannakis, I. An advanced GPR modelling framework - the next generation of gprMax. Proc. 8th Int. Workshop Advanced Ground Penetrating Radar (IWAGPR 2015), Florence, Italy, 7-10 July 2015; pp. 1-4; doi: 10.1109/IWAGPR.2015.7292621.

    5. Warren C.; Giannopoulos, A. Experimental and Modeled Performance of a Ground Penetrating Radar Antenna in Lossy Dielectrics. IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing 2016, Vol. 9, No. 1, pp. 29-36; doi: 10.1109/JSTARS.2015.2430933.

    6. Frezza, F.; Mangini, F.; Pajewski, L.; Schettini, G.; Tedeschi, N. Spectral domain method for the electromagnetic scattering by a buried sphere. J. Optical Society of America A 2013, Vol. 30, No. 4, pp. 783- 790, 2013; doi: 10.1364/JOSAA.30.000783.

    7. Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G.; Tedeschi, N. Cylindrical-Wave Approach for Electromagnetic Scattering by Subsurface Metallic Targets in a Lossy Medium. J. Applied Geophysics 2013, Vol. 97, pp. 55-59, 2013; doi: 0.1016/j.jappgeo.2013.01.004.

    8. Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G.; Tedeschi, N. Electromagnetic Scattering by a Metallic Cylinder Buried in a Lossy Medium With the Cylindrical-Wave Approach. IEEE Geoscience Remote Sensing Letters 2013, Vol. 10, No. 1, pp. 179-183; doi: 10.1109/LGRS.2012.2197172.

    9. Bourlier, C.; Le Bastard, C.; Pinel, N. Full wave PILE method for the electromagnetic scattering from random rough layers. Proc. 15th Intl. Conf. Ground Penetrating Radar (GPR 2014), Brussels, Belgium, 30 June4 July 2014; pp. 545-551; doi: 10.1109/ICGPR.2014.6970483.

    10. Poljak, D.; Dorić, V. Transmitted field in the lossy ground from ground penetrating radar (GPR) dipole antenna. WIT Trans. Modelling and Simulation 2015, Vol. 59, pp. 3-11; doi: 10.2495/CMEM150011.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark