publication . Article . 2017

Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets.

Lotta K. Veistinen; Tuija Mustonen; Tuija Mustonen; Md. Rakibul Hasan; Maarit Takatalo; Yukiho Kobayashi; Yukiho Kobayashi; Dörthe A. Kesper; Andrea Vortkamp; David P. Rice; ...
Open Access English
  • Published: 01 Dec 2017 Journal: Frontiers in Physiology (issn: 1664-042X, Copyright policy)
  • Publisher: Frontiers Media S.A.
  • Country: Finland
Loss-of-function mutations in GLI3 and IHH cause craniosynostois and reduced osteogeneiss, respectively. In this study, we show that ihh ligand, the receptor Ptch1 and Gli transcription factors are differentialyy expressed in embryonic mouse calvaria osteogenic condenstions. We show that in both ihh(-/-) and Gli3(Xt-J/Xt-J) embroyonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone developement. RUNX2 is a master regulatory transciption factor controlling osteogenesis. In the absence of Gli3, RUNX2 isoform II and IHH are upregulated, and RUNX2 isoform I downregulated. This is consistent with the expandeed and...
Medical Subject Headings: body regionsmusculoskeletal diseasesembryonic structuresstomatognathic system
free text keywords: calvarial development, hedgehog signaling pathway, osteoblast, cell differentiation, craniosynostosis, Physiology, QP1-981, Physiology (medical), Original Research, BONE-DEVELOPMENT, INDIAN-HEDGEHOG, OSTEOBLAST DIFFERENTIATION, EXPRESSION PATTERNS, DIGIT NUMBER, DERMAL BONE, STEM-CELLS, MOUSE, 313 Dentistry, 1184 Genetics, developmental biology, physiology, Cell biology, Indian hedgehog, biology.organism_classification, biology, Cranial suture morphogenesis, Calvaria, medicine.anatomical_structure, medicine, Cellular differentiation, RUNX2, GLI3, Transcription factor
44 references, page 1 of 3

Abzhanov A.Rodda S. J.McMahon A. P.Tabin C. J. (2007). Regulation of skeletogenic differentiation in cranial dermal bone. Development 134, 3133–3144. 10.1242/dev.002709 17670790 [OpenAIRE] [PubMed] [DOI]

Bialek P.Kern B.Yang X.Schrock M.Sosic D.Hong N.. (2004). A twist code determines the onset of osteoblast differentiation. Dev. Cell 6, 423–435. 10.1016/S1534-5807(04)00058-9 15030764 [OpenAIRE] [PubMed] [DOI]

Bourgeois P.Bolcato-Bellemin A. L.Danse J. M.Bloch-Zupan A.Yoshiba K.Stoetzel C.. (1998). The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. Hum. Mol. Genet.7, 945–957. 10.1093/hmg/7.6.945 9580658 [OpenAIRE] [PubMed] [DOI]

Cao T.Wang C.Yang M.Wu C.Wang B. (2013). Mouse limbs expressing only the Gli3 repressor resemble those of Sonic hedgehog mutants. Dev. Biol. 379, 221–228. 10.1016/j.ydbio.2013.04.025 23644062 [OpenAIRE] [PubMed] [DOI]

Deckelbaum R. A.Holmes G.Zhao Z.Tong C.Basilico C.Loomis C. A. (2012). Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development 139, 1346–1358. 10.1242/dev.076729 22395741 [OpenAIRE] [PubMed] [DOI]

Feng W.Choi I.Clouthier D. E.Niswander L.Williams T. (2013). The Ptch1(DL) mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome-associated skeletal defects. Genesis 51, 677–689. 10.1002/dvg.22416 23897749 [OpenAIRE] [PubMed] [DOI]

Fujiwara M.Tagashira S.Harada H.Ogawa S.Katsumata T.Nakatsuka M.. (1999). Isolation and characterization of the distal promoter region of mouse Cbfa1. Biochim. Biophys. Acta 1446, 265–272. 10.1016/S0167-4781(99)00113-X 10524201 [PubMed] [DOI]

Handorf A. M.Chamberlain C. S.Li W. J. (2015). Endogenously produced Indian hedgehog regulates TGFbeta-driven chondrogenesis of human bone marrow stromal/stem cells. Stem Cells Dev. 24, 995–1007. 10.1089/scd.2014.0266 25519748 [OpenAIRE] [PubMed] [DOI]

Hilton M. J.Tu X.Cook J.Hu H.Long F. (2005). Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development 132, 4339–4351. 10.1242/dev.02025 16141219 [OpenAIRE] [PubMed] [DOI]

Hurst J. A.Jenkins D.Vasudevan P. C.Kirchhoff M.Skovby F.Rieubland C.. (2011). Metopic a nd sagittal synostosis in greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3. Eur. J. Hum. Genet.19, 757–762. 10.1038/ejhg.2011.13 21326280 [OpenAIRE] [PubMed] [DOI]

Huycke T. R.Eames B. F.Kimmel C. B. (2012). Hedgehog-dependent proliferation drives modular growth during morphogenesis of a dermal bone. Development 139, 2371–2380. 10.1242/dev.079806 22627283 [OpenAIRE] [PubMed] [DOI]

Joeng K. S.Long F. (2009). The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development 136, 4177–4185. 10.1242/dev.041624 19906844 [OpenAIRE] [PubMed] [DOI]

Kim H. J.Rice D. P.Kettunen P. J.Thesleff I. (1998). FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125, 1241–1251. 9477322 [OpenAIRE] [PubMed]

Klopocki E.Lohan S.Brancati F.Koll R.Brehm A.Seemann P.. (2011). Copy-number variations involving the IHH locus are associated with syndactyly and craniosynostosis. Am. J. Hum. Genet.88, 70–75. 10.1016/j.ajhg.2010.11.006 21167467 [OpenAIRE] [PubMed] [DOI]

Koziel L.Wuelling M.Schneider S.Vortkamp A. (2005). Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132, 5249–5260. 10.1242/dev.02097 16284117 [OpenAIRE] [PubMed] [DOI]

44 references, page 1 of 3
Any information missing or wrong?Report an Issue