publication . Article . Other literature type . 2018

Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin

Mokhamad Nur; Todor Vasiljevic;
Open Access English
  • Published: 05 Jan 2018 Journal: Materials, volume 11, issue 1 (eissn: 1996-1944, Copyright policy)
  • Publisher: MDPI
Abstract
Nanoparticles or microparticles created by physical complexation between two polyelectrolytes may have a prospective use as an excipient for oral insulin administration. Natural polymers such as tragacanth, alginate, dextran, pullulan, hyaluronic acid, gelatin and chitosan can be potential candidates for this purpose. In this research, insulin particles were prepared by the inclusion of insulin into a tragacanth hydrogel. The effect of the pH and concentration relationship involving polyelectrolytes offering individual particle size and zeta potential was assessed by zetasizer and scanning electron microscopy (SEM). Insulin–tragacanth interactions at varying pH ...
Subjects
Medical Subject Headings: technology, industry, and agriculture
free text keywords: Article, insulin, protein, peptides, PEC, hydrogels, gum tragacanth, insulin carrier, rheology, drug delivery, biopolymers, Technology, T, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85, General Materials Science, Pullulan, chemistry.chemical_compound, chemistry, Zeta potential, Self-healing hydrogels, Differential scanning calorimetry, Gelatin, food.ingredient, food, Tragacanth, Materials science, Excipient, medicine.drug, medicine, Nuclear chemistry, Polyelectrolyte, Composite material
Download fromView all 4 versions
Materials
Article . 2018
Materials
Article . 2018
Provider: Crossref
Materials
Article
Provider: UnpayWall
56 references, page 1 of 4

1. Sonia, T.A.; Sharma, C.P. An overview of natural polymers for oral insulin delivery. Drug Discov. Today 2012, 17, 784-792. [CrossRef] [PubMed]

2. Nur, M.; Vasiljevic, T. Can natural polymers assist in delivering insulin orally? Int. J. Biol. Macromol. 2017, 103, 889-901. [CrossRef] [PubMed] [OpenAIRE]

3. Peppas, N.A.; Kavimandan, N.J. Nanoscale analysis of protein and peptide absorption: Insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur. J. Pharm. Sci. 2006, 29, 183-197. [CrossRef] [PubMed] [OpenAIRE]

4. Sarmento, B.; Ferreira, D.C.; Jorgensen, L.; van de Weert, M. Probing insulin's secondary structure after entrapment into alginate/chitosan nanoparticles. Eur. J. Pharm. Biopharm. 2007, 65, 10-17. [CrossRef] [PubMed]

5. Sarmento, B.; Martins, S.; Ribeiro, A.; Veiga, F.; Neufeld, R.; Ferreira, D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int. J. Pept. Res. Ther. 2006, 12, 131-138. [CrossRef] [OpenAIRE]

6. Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Gurny, R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 35-52. [CrossRef] [OpenAIRE]

7. De, S.; Robinson, D. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J. Control. Release 2003, 89, 101-112. [CrossRef]

8. Lee, K.Y.; Park, W.H.; Ha, W.S. Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules. J. Appl. Polym. Sci. 1997, 63, 425-432. [CrossRef]

9. Lin, Y.H.; Sonaje, K.; Lin, K.M.; Juang, J.H.; Mi, F.L.; Yang, H.W.; Sung, H.W. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J. Control. Release 2008, 132, 141-149. [CrossRef] [PubMed]

10. Avadi, M.R.; Sadeghi, A.M.M.; Mohammadpour, N.; Abedin, S.; Atyabi, F.; Dinarvand, R.; Rafiee-Tehrani, M. Preparation and characterization of insulin nanoparticles using chitosan and arabic gum with ionic gelation method. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 58-63. [CrossRef] [PubMed]

11. Martins, S.; Sarmento, B.; Souto, E.B.; Ferreira, D.C. Insulin-loaded alginate microspheres for oral delivery-effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr. Polym. 2007, 69, 725-731. [CrossRef]

12. Moses, L.R.; Dileep, K.J.; Sharma, C.P. Beta cyclodextrin-insulin-encapsulated chitosan/alginate matrix: Oral delivery system. J. Appl. Polym. Sci. 2000, 75, 1089-1096. [CrossRef] [OpenAIRE]

13. Wang, K.; He, Z. Alginate-konjac glucomannan-chitosan beads as controlled release matrix. Int. J. Pharm. 2002, 244, 117-126. [CrossRef]

14. Onal, S.; Zihnioglu, F. Encapsulation of insulin in chitosan-coated alginate beads: Oral therapeutic peptide delivery. Artif. Cell Blood Substit. Immobil. Biotechnol. 2002, 30, 229-237. [CrossRef]

15. Silva, C.M.; Ribeiro, A.J.; Figueiredo, I.V.; Gonçalves, A.R.; Veiga, F. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. Int. J. Pharm. 2006, 311, 1-10. [CrossRef] [PubMed] [OpenAIRE]

56 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2018

Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin

Mokhamad Nur; Todor Vasiljevic;