publication . Article . 2017

Food-Related Odors Activate Dopaminergic Brain Areas

Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel;
  • Published: 01 Dec 2017
  • Publisher: Frontiers Media SA
Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasan...
Medical Subject Headings: psychological phenomena and processesdigestive, oral, and skin physiology
free text keywords: Neuroscience, Original Research, olfaction, edibility, food, fMRI, reward circuit, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Biological Psychiatry, Behavioral Neuroscience, Neuropsychology and Physiological Psychology, Neurology, Psychiatry and Mental health, Cognitive psychology, Stimulus (physiology), Dopaminergic, Psychology, Ventral tegmental area, medicine.anatomical_structure, medicine, Odor, Anterior cingulate cortex, Sensory system, Brain stimulation reward
Related Organizations
41 references, page 1 of 3

Beaver J. D.Lawrence A. D.van Ditzhuijzen J.Davis M. H.Woods A.Calder A. J. (2006). Individual differences in reward drive predict neural responses to images of food. J. Neurosci. 26, 5160–5166. 10.1523/JNEUROSCI.0350-06.2006 16687507 [OpenAIRE] [PubMed] [DOI]

Bensafi M.Iannilli E.Poncelet J.Seo H. S.Gerber J.Rouby C.. (2012). Dissociated representations of pleasant and unpleasant Olfacto-trigeminal mixtures: an fMRI study. PLoS ONE 7:e38358. 10.1371/journal.pone.0038358 22701631 [OpenAIRE] [PubMed] [DOI]

Berridge K. C. (1996). Food reward : brain substrates of wanting and liking. Neurosci. Biobehav. Rev. 20, 1–25. 10.1016/0149-7634(95)00033-B 8622814 [OpenAIRE] [PubMed] [DOI]

Boesveldt S.Frasnelli J.Gordon A. R.Lundström J. N. (2010). The fish is bad: negative food odors elicit faster and more accurate reactions than other odors. Biol. Psychol. 84, 313–317. 10.1016/j.biopsycho.2010.03.006 20227457 [OpenAIRE] [PubMed] [DOI]

Bragulat V.Dzemidzic M.Bruno C.Cox C. A.Talavage T.Considine R. V.. (2010). Food-related odor probes of brain reward circuits during hunger: a pilot fMRI study. Obesity (Silver Spring)18, 1566–1571. 10.1038/oby.2010.57 20339365 [OpenAIRE] [PubMed] [DOI]

Brett M.Anton J.Valabregue R.Poline J. (2002). Region of interest analysis using an SPM toolbox [abstract], in Proceedings of the 8th International Conference on Functional Mapping of the Human Brain (Sendai).

Bush G.Vogt B. A.Holmes J.Dale A. M.Greve D.Jenike M. A.. (2002). Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc. Natl. Acad. Sci. U.S.A. 99, 523–528. 10.1073/pnas.012470999 11756669 [OpenAIRE] [PubMed] [DOI]

DiLeone R. J.Taylor J. R.Picciotto M. R. (2012). The drive to e at: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat. Neurosci. 15, 1330–1335. 10.1038/nn.3202 23007187 [OpenAIRE] [PubMed] [DOI]

Drewnowski A. (1998). Energy density, palatability, and satiety: implications for weight control. Nutr. Rev. 56, 347–353. 10.1111/j.1753-4887.1998.tb01677.x 9884582 [OpenAIRE] [PubMed] [DOI]

Eiler W. J. A.Dzemidzic M.Case K. R.Considine R. V.Kareken D. A. (2012). Correlation between ventromedial prefrontal cortex activation to food aromas and cue-driven eating: an fMRI study. Chemosens. Percept. 5, 27–36. 10.1007/s12078-011-9112-6 25485031 [OpenAIRE] [PubMed] [DOI]

Fjaeldstad A.Fernandes H. M.Van Hartevelt T. J.Gleesborg C.Møller A.Ovesen T.. (2017). Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci. Rep. 7:42534. 10.1038/srep42534 28195241 [OpenAIRE] [PubMed] [DOI]

Frasnelli J.Hummel C.Bojanowski V.Warr J.Gerber J.Hummel T. (2015). Food-related odors and the reward circuit: functional MRI. Chemosens. Percept. 8, 192–200. 10.1007/s12078-015-9193-8 [OpenAIRE] [DOI]

Gottfried J. A.Zald D. H. (2005). On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res. Rev. 50, 287–304. 10.1016/j.brainresrev.2005.08.004 16213593 [OpenAIRE] [PubMed] [DOI]

Haruno M.Kawato M. (2005). Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. J. Neurophysiol. 95, 948–959. 10.1152/jn.00382.2005 16192338 [OpenAIRE] [PubMed] [DOI]

Hummel T.Kobal G.Gudziol H.Mackay-Sim A. (2007). Normative data for the 'Sniffin' Sticks' including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur. Arch. Otorhinolaryngol. 264, 237–243. 10.1007/s00405-006-0173-0 17021776 [OpenAIRE] [PubMed] [DOI]

41 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2017

Food-Related Odors Activate Dopaminergic Brain Areas

Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel;