publication . Article . Other literature type . Preprint . 2017

Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

M. Levent Kavvas; Tongbi Tu; Ali Ercan; James Polsinelli;
Open Access English
  • Published: 16 Oct 2017 Journal: Earth System Dynamics (issn: 2190-4979, eissn: 2190-4987, Copyright policy)
  • Publisher: Copernicus Publications
Abstract
<jats:p>Abstract. Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractio...
Subjects
arXiv: Physics::GeophysicsPhysics::Fluid Dynamics
free text keywords: Science, Q, Geology, QE1-996.5, Dynamic and structural geology, QE500-639.5, General Earth and Planetary Sciences, Hydrogeology, Continuity equation, Aquifer, geography.geographical_feature_category, geography, Groundwater flow equation, Fractional calculus, Atmospheric sciences, Groundwater model, Dupuit–Forchheimer assumption, Geomorphology, Mechanics, Groundwater flow
Related Organizations
45 references, page 1 of 3

Atangana, A.: Drawdown in prolate spheroidal-spherical coordinates obtained via Green's function and perturbation methods, Commun. Nonlin. Sci. Numer. Simul., 19, 1259-1269, 2014.

Atangana, A. and Baleanu, D.: Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus, Int. J. Non-Lin. Mech., 67, 278-284, 2014. [OpenAIRE]

Atangana, A. and Bildik, N.: The use of fractional order derivative to predict the groundwater flow, Math. Probl. Eng., 2013, 543026, https://doi.org/10.1155/2013/543026, 2013. [OpenAIRE]

Atangana, A. and Vermeulen, P.: Analytical solutions of a space-time fractional derivative of groundwater flow equation, Abstr. Appl. Anal., 2014, 381753, https://doi.org/10.1155/2014/381753, 2014. [OpenAIRE]

Baeumer, B. and Meerschaert, M.: Fractional diffusion with two time scales, Physica A, 373, 237-251, 2007.

Baeumer, B., Benson, D. A., and Meerschaert, M. M.: Advection and dispersion in time and space, Physica A, 350, 245-262, 2005.

Bear, J.: Groundwater hydraulics, McGraw, New York, 1979.

Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M.: Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403-1412, 2000a. [OpenAIRE]

Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M.: The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423, 2000b. [OpenAIRE]

Black, J. H., Barker, J. A., and Noy, D. J.: Crosshole investigations - the method, theory and analysis of crosshole sinusoidal pressure tests in fissured rock, Stripa Proj., Int. Rep. 86-03, SKB, Stockholm, 1986.

Cloot, A. and Botha, J.: A generalised groundwater flow equation using the concept of non-integer order derivatives, Water SA, 32, 1-7, 2006.

Ercan, A. and Kavvas, M. L.: Fractional governing equations of diffusion wave and kinematic wave open-channel flow in fractional time-space. II. Numerical simulations, J. Hydrol. Eng., 20, 04014097, https://doi.org/10.1061/(ASCE)HE.1943- 5584.0001081, 2014.

Ercan, A. and Kavvas, M. L.: Numerical Solution and Application of Time-Space Fractional Governing Equations of OneDimensional Unsteady Open Channel Flow Process, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-364, 2016.

Freeze, R. A. and Cherry, J. A.: Groundwater, Prentice Hall International, Hemel Hempstead, 1979.

Kang, P. K., Le Borgne, T., Dentz, M., Bour, O., and Juanes, R.: Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model, Water Resour. Res., 51, 940-959, 2015.

45 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue