publication . Article . Other literature type . 2016

Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson;
Open Access
  • Published: 16 Mar 2016 Journal: Frontiers in Ecology and Evolution, volume 4 (eissn: 2296-701X, Copyright policy)
  • Publisher: Frontiers Media SA
Abstract
The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advanta...
Subjects
free text keywords: δ18O, Habitat, Trophic level, δ15N, Food web, δ13C, Biology, Ecology, Terrestrial ecosystem, Stable isotope ratio, Ecology and Evolution, 18-oxygen, deuterium, diet, drinking water, isotopic discrimination, nutrient transfer, physiology, trophic position, Evolution, QH359-425, QH540-549.5
193 references, page 1 of 13

Auerswald K. Rossmann A. Schäufele R. Schwertl M. Monahan F. J. Schnyder H. (2011). Does natural weathering change the stable isotope composition (2 H, 13 C, 15 N, 18 O and 34 S) of cattle hair? Rapid Commun. Mass Spectrom. 25, 3741–3748. 10.1002/rcm.5284 22468330 [OpenAIRE] [PubMed] [DOI]

Ayliffe L. K. Chivas A. R. (1990). Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54, 2603–2609. 10.1016/0016-7037(90)90246-H [DOI]

Babler A. L. Pilati A. Vanni M. J. (2011). Terrestrial support of detritivorous fish populations decreases with watershed size. Ecosphere 2, art76. 10.1890/ES11-00043.1 [DOI]

Batt R. D. Carpenter S. R. Cole J. J. Pace M. L. Cline T. J. Johnson R. A. . (2012). Resources supporting the food web of a naturally productive lake. Limnol. Oceanogr. 57, 1443–1452. 10.4319/lo.2012.57.5.1443 [OpenAIRE] [DOI]

Batt R. D. Carpenter S. R. Cole J. J. Pace M. L. Johnson R. A. Kurtzweil J. T. . (2015). Altered energy flow in the food web of an experimentally darkened lake. Ecosphere 6, art33. 10.1890/ES14-00241.1 [DOI]

Baxter C. V. Fausch K. D. Carl Saunders W. (2005). Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50, 201–220. 10.1111/j.1365-2427.2004.01328.x [OpenAIRE] [DOI]

Bearhop S. Adams C. E. Waldron S. Fuller R. A. Macleod H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012. 10.1111/j.0021-8790.2004.00861.x [OpenAIRE] [DOI]

Berggren M. Bergström A.-K. Karlsson J. (2015). Intraspecific autochthonous and allochthonous resource use by zooplankton in a humic lake during the transitions between winter, summer and fall. PLoS ONE 10:e0120575. 10.1371/journal.pone.0120575 25764501 [OpenAIRE] [PubMed] [DOI]

Berggren M. Ziegler S. E. St-Gelais N. F. Beisner B. E. Del Giorgio P. A. (2014). Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95, 1947–1959. 10.1890/13-0615.1 25163126 [OpenAIRE] [PubMed] [DOI]

Birchall J. O'Connell T. C. Heaton T. H. E. Hedges R. E. M. (2005). Hydrogen isotope ratios in animal body protein reflect trophic level. J. Anim. Ecol. 74, 877–881. 10.1111/j.1365-2656.2005.00979.x [OpenAIRE] [DOI]

Boecklen W. J. Yarnes C. T. Cook B. A. James A. C. (2011). On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440. 10.1146/annurev-ecolsys-102209-144726 [OpenAIRE] [DOI]

Bortolotti L. E. Clark R. G. Wassenaar L. I. (2013). Hydrogen isotope variability in prairie wetland systems: implications for studies of migratory connectivity. Ecol. Appl. 23, 110–121. 10.1890/12-0232.1 23495640 [OpenAIRE] [PubMed] [DOI]

Bowen G. J. (2008). Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J. Geophys. Res. Atmospheres 113, D05113. 10.1029/2007jd009295 [OpenAIRE] [DOI]

Bowen G. J. Chesson L. Nielson K. Cerling T. E. Ehleringer J. R. (2005a). Treatment methods for the determination of δ2 H and δ18 O of hair keratin by continuous-flow isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 19, 2371–2378. 10.1002/rcm.2069 16047316 [OpenAIRE] [PubMed] [DOI]

Bowen G. J. Ehleringer J. R. Chesson L. A. Thompson A. H. Podlesak D. W. Cerling T. E. (2009). Dietary and physiological controls on the hydrogen and oxygen isotope ratios of hair from mid-20th century indigenous populations. Am. J. Phys. Anthropol. 139, 494–504. 10.1002/ajpa.21008 19235792 [OpenAIRE] [PubMed] [DOI]

193 references, page 1 of 13
Abstract
The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advanta...
Subjects
free text keywords: δ18O, Habitat, Trophic level, δ15N, Food web, δ13C, Biology, Ecology, Terrestrial ecosystem, Stable isotope ratio, Ecology and Evolution, 18-oxygen, deuterium, diet, drinking water, isotopic discrimination, nutrient transfer, physiology, trophic position, Evolution, QH359-425, QH540-549.5
193 references, page 1 of 13

Auerswald K. Rossmann A. Schäufele R. Schwertl M. Monahan F. J. Schnyder H. (2011). Does natural weathering change the stable isotope composition (2 H, 13 C, 15 N, 18 O and 34 S) of cattle hair? Rapid Commun. Mass Spectrom. 25, 3741–3748. 10.1002/rcm.5284 22468330 [OpenAIRE] [PubMed] [DOI]

Ayliffe L. K. Chivas A. R. (1990). Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54, 2603–2609. 10.1016/0016-7037(90)90246-H [DOI]

Babler A. L. Pilati A. Vanni M. J. (2011). Terrestrial support of detritivorous fish populations decreases with watershed size. Ecosphere 2, art76. 10.1890/ES11-00043.1 [DOI]

Batt R. D. Carpenter S. R. Cole J. J. Pace M. L. Cline T. J. Johnson R. A. . (2012). Resources supporting the food web of a naturally productive lake. Limnol. Oceanogr. 57, 1443–1452. 10.4319/lo.2012.57.5.1443 [OpenAIRE] [DOI]

Batt R. D. Carpenter S. R. Cole J. J. Pace M. L. Johnson R. A. Kurtzweil J. T. . (2015). Altered energy flow in the food web of an experimentally darkened lake. Ecosphere 6, art33. 10.1890/ES14-00241.1 [DOI]

Baxter C. V. Fausch K. D. Carl Saunders W. (2005). Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50, 201–220. 10.1111/j.1365-2427.2004.01328.x [OpenAIRE] [DOI]

Bearhop S. Adams C. E. Waldron S. Fuller R. A. Macleod H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012. 10.1111/j.0021-8790.2004.00861.x [OpenAIRE] [DOI]

Berggren M. Bergström A.-K. Karlsson J. (2015). Intraspecific autochthonous and allochthonous resource use by zooplankton in a humic lake during the transitions between winter, summer and fall. PLoS ONE 10:e0120575. 10.1371/journal.pone.0120575 25764501 [OpenAIRE] [PubMed] [DOI]

Berggren M. Ziegler S. E. St-Gelais N. F. Beisner B. E. Del Giorgio P. A. (2014). Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95, 1947–1959. 10.1890/13-0615.1 25163126 [OpenAIRE] [PubMed] [DOI]

Birchall J. O'Connell T. C. Heaton T. H. E. Hedges R. E. M. (2005). Hydrogen isotope ratios in animal body protein reflect trophic level. J. Anim. Ecol. 74, 877–881. 10.1111/j.1365-2656.2005.00979.x [OpenAIRE] [DOI]

Boecklen W. J. Yarnes C. T. Cook B. A. James A. C. (2011). On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440. 10.1146/annurev-ecolsys-102209-144726 [OpenAIRE] [DOI]

Bortolotti L. E. Clark R. G. Wassenaar L. I. (2013). Hydrogen isotope variability in prairie wetland systems: implications for studies of migratory connectivity. Ecol. Appl. 23, 110–121. 10.1890/12-0232.1 23495640 [OpenAIRE] [PubMed] [DOI]

Bowen G. J. (2008). Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J. Geophys. Res. Atmospheres 113, D05113. 10.1029/2007jd009295 [OpenAIRE] [DOI]

Bowen G. J. Chesson L. Nielson K. Cerling T. E. Ehleringer J. R. (2005a). Treatment methods for the determination of δ2 H and δ18 O of hair keratin by continuous-flow isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 19, 2371–2378. 10.1002/rcm.2069 16047316 [OpenAIRE] [PubMed] [DOI]

Bowen G. J. Ehleringer J. R. Chesson L. A. Thompson A. H. Podlesak D. W. Cerling T. E. (2009). Dietary and physiological controls on the hydrogen and oxygen isotope ratios of hair from mid-20th century indigenous populations. Am. J. Phys. Anthropol. 139, 494–504. 10.1002/ajpa.21008 19235792 [OpenAIRE] [PubMed] [DOI]

193 references, page 1 of 13
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2016

Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson;