Approximating fixed points for nonself mappings in CAT(0) spaces

Article English OPEN
Razani Abdolrahman; Shabani Saeed;
(2011)
  • Publisher: Springer Nature
  • Journal: Fixed Point Theory and Applications,volume 2,011,issue 1,page65 (issn: 1687-1812, eissn: 1687-1812)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1186/1687-1812-2011-65
  • Subject: Applied Mathematics | Geometry and Topology | Applied mathematics. Quantitative methods | CAT(0) spaces | fixed point | T57-57.97 | QA299.6-433 | Analysis | condition (<it>E</it>) | nonself mappings

<p>Abstract</p> <p>Suppose <it>K </it>is a nonempty closed convex subset of a complete CAT(0) space <it>X </it>with the nearest point projection <it>P </it>from <it>X </it>onto <it>K</it>. Let <it>T </it>: <it>K </it>&#8594; <it>X </it>be a nonself mapping, satisfying C... View more
  • References (8)

    1. Laowang, W, Panyanak, B: Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces. Fixed Point Theory Appl. 367274, 11 (2010)

    2. Garcia-Falset, J, Liorens-Fuster, E, Suzuki, T: Fixed point theory for a class of generalized nonexpansive mapping. J Math Anal Appl. 375, 185-195 (2011). doi:10.1016/j.jmaa.2010.08.069

    3. Bridson, M, Haefliger, A: Metric Spaces of Non-Positive Curvature, Fundamental Principles of Mathematical Sciences. Springer, Berlin319 (1999)

    4. Dhompongsa, S, Panyanak, B: On Δ-convergence theorems in CAT(0) spaces. Comput Math Appl. 56, 2572-2579 (2008). doi:10.1016/j.camwa.2008.05.036

    5. Dhompongsa, S, Kirk, WA, Sims, B: Fixed point of uniformly lipschitzian mappings. Nonlinear Anal. 65, 762-772 (2006). doi:10.1016/j.na.2005.09.044

    6. Kirk, W, Panyanak, B: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689-3696 (2008). doi:10.1016/j. na.2007.04.011

    7. Dhompongsa, S, Kirk, WA, Panyanak, B: Nonexpansive set-valued mappings in metric and Banach spaces. J Nonlinear Convex Anal. 8, 35-45 (2007)

    8. Senter, HF, Dotson, WG: Approximating fixed points of nonexpansive mappings. Proc Am Math Soc. 44, 375-380 (1974). doi:10.1090/S0002-9939-1974-0346608-8

  • Metrics
Share - Bookmark