publication . Article . 2018

Glial Tissue Mechanics and Mechanosensing by Glial Cells

Katarzyna Pogoda; Katarzyna Pogoda; Paul A. Janmey;
Open Access English
  • Published: 01 Feb 2018 Journal: Frontiers in Cellular Neuroscience, volume 12 (eissn: 1662-5102, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their biochemical and medical consequences. A multi-level approach from whole organ rheology to single cell mechanics is needed to understand the physical aspects of human brain func...
Subjects
free text keywords: Neuroscience, Review, brain tissue rheology, mechanical properties of brain tumors, brain-mimicking ECMs, mechanosensing, normal and transformed glial cells, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Cellular and Molecular Neuroscience, Human brain, medicine.anatomical_structure, medicine, Cell mechanics, Inflammation, medicine.symptom, Brain Cell, Brain tissue, Biology, Neurodegeneration, medicine.disease, Pathological, Stimulus (physiology)
Funded by
NIH| Pathological consequences of altered tissue mechanics in fibrosis
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 2R01EB017753-05
  • Funding stream: NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING
,
NIH| Core 2: Theory Core - Multiscale models for mechano-chemical phenomena
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1U54CA193417-01
  • Funding stream: NATIONAL CANCER INSTITUTE
62 references, page 1 of 5

Ananthanarayanan B.Kim Y.Kumar S. (2011). Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32, 7913–7923. 10.1016/j.biomaterials.2011.07.005 21820737 [OpenAIRE] [PubMed] [DOI]

Andersen T.Auk-Emblem P.Dornish M. (2015). 3D Cell culture in alginate hydrogels. Microarrays 4, 133–161. 10.3390/microarrays4020133 27600217 [OpenAIRE] [PubMed] [DOI]

Arani A.Min H. K.Fattahi N.Wetjen N. M.Trzasko J. D.Manduca A. (2017). Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model. Magn. Reson. Med. 9, 1043–1051. 10.1002/mrm.26738 [OpenAIRE] [DOI]

Balasubramanian S.Packard J. A.Leach J. B.Powell E. M. (2016). Three-dimensional environment sustains morphological heterogeneity and pr omotes phenotypic progression during astrocyte development. Tissue Eng. A 22, 885–898. 10.1089/ten.tea.2016.0103 27193766 [OpenAIRE] [PubMed] [DOI]

Bellail A. C.Hunter S. B.Brat D. J.Tan C.Van Meir E. G. (2004). Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell Biol. 36, 1046–1069. 10.1016/j.biocel.2004.01.013 15094120 [OpenAIRE] [PubMed] [DOI]

Bilston L. E.Liu Z.Phan-Thien N. (1997). Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34, 377–385. 10.3233/BIR-1997-34603 9640354 [OpenAIRE] [PubMed] [DOI]

Braun J.Guo J.Lützkendorf R.Stadler J.Papazoglou S.Hirsch S.. (2014). High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T. Neuroimage 90, 308–314. 10.1016/j.neuroimage.2013.12.032 24368262 [OpenAIRE] [PubMed] [DOI]

Budday S.Nay R.de Rooij R.Steinmann P.Wyrobek T.Ovaert T. C.. (2015). Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater.46, 318–330. 10.1016/j.jmbbm.2015.02.024 25819199 [OpenAIRE] [PubMed] [DOI]

Butcher D. T.Alliston T.Weaver V. M. (2009). A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122. 10.1038/nrc2544 19165226 [OpenAIRE] [PubMed] [DOI]

Chauvet D.Imbault M.Capelle L.Demene C.Mossad M.Karachi C.. (2016). In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall Med.37, 584–590. 10.1055/s-0034-1399152 25876221 [OpenAIRE] [PubMed] [DOI]

Christ A. F.Franze K.Gautier H.Moshayedi P.Fawcett J.Franklin R. J.. (2010). Mechanical difference betw een white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech.43, 2986–2992. 10.1016/j.jbiomech.2010.07.002 20656292 [OpenAIRE] [PubMed] [DOI]

D'Abaco G. M.Kaye A. H. (2007). Integrins: molecular determinants of glioma invasion. J. Clin. Neurosci. 14, 1041–1048. 10.1016/j.jocn.2007.06.019 17954373 [OpenAIRE] [PubMed] [DOI]

Daud M. F.Pawar K. C.Claeyssens F.Ryan A. J.Haycock J. W. (2012). An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33, 5901–5913. 10.1016/j.biomaterials.2012.05.008 22656449 [OpenAIRE] [PubMed] [DOI]

Delpech B.Maingonnat C.Girard N.Chauzy C.Maunoury R.Olivier A. (1993). Hyaluronan and hyaluronectin in the extracellular-matrix of human brain-tumor stroma. Eur. J. Cancer 29A, 1012–1017. 10.1016/S0959-8049(05)80214-X 7684596 [PubMed] [DOI]

East E.Golding J. P.Phillips J. B. (2009). A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. J. Tissue Eng. Regen. Med. 3, 634–646. 10.1002/term.209 19813215 [OpenAIRE] [PubMed] [DOI]

62 references, page 1 of 5
Abstract
Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their biochemical and medical consequences. A multi-level approach from whole organ rheology to single cell mechanics is needed to understand the physical aspects of human brain func...
Subjects
free text keywords: Neuroscience, Review, brain tissue rheology, mechanical properties of brain tumors, brain-mimicking ECMs, mechanosensing, normal and transformed glial cells, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Cellular and Molecular Neuroscience, Human brain, medicine.anatomical_structure, medicine, Cell mechanics, Inflammation, medicine.symptom, Brain Cell, Brain tissue, Biology, Neurodegeneration, medicine.disease, Pathological, Stimulus (physiology)
Funded by
NIH| Pathological consequences of altered tissue mechanics in fibrosis
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 2R01EB017753-05
  • Funding stream: NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING
,
NIH| Core 2: Theory Core - Multiscale models for mechano-chemical phenomena
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1U54CA193417-01
  • Funding stream: NATIONAL CANCER INSTITUTE
62 references, page 1 of 5

Ananthanarayanan B.Kim Y.Kumar S. (2011). Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32, 7913–7923. 10.1016/j.biomaterials.2011.07.005 21820737 [OpenAIRE] [PubMed] [DOI]

Andersen T.Auk-Emblem P.Dornish M. (2015). 3D Cell culture in alginate hydrogels. Microarrays 4, 133–161. 10.3390/microarrays4020133 27600217 [OpenAIRE] [PubMed] [DOI]

Arani A.Min H. K.Fattahi N.Wetjen N. M.Trzasko J. D.Manduca A. (2017). Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model. Magn. Reson. Med. 9, 1043–1051. 10.1002/mrm.26738 [OpenAIRE] [DOI]

Balasubramanian S.Packard J. A.Leach J. B.Powell E. M. (2016). Three-dimensional environment sustains morphological heterogeneity and pr omotes phenotypic progression during astrocyte development. Tissue Eng. A 22, 885–898. 10.1089/ten.tea.2016.0103 27193766 [OpenAIRE] [PubMed] [DOI]

Bellail A. C.Hunter S. B.Brat D. J.Tan C.Van Meir E. G. (2004). Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell Biol. 36, 1046–1069. 10.1016/j.biocel.2004.01.013 15094120 [OpenAIRE] [PubMed] [DOI]

Bilston L. E.Liu Z.Phan-Thien N. (1997). Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34, 377–385. 10.3233/BIR-1997-34603 9640354 [OpenAIRE] [PubMed] [DOI]

Braun J.Guo J.Lützkendorf R.Stadler J.Papazoglou S.Hirsch S.. (2014). High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T. Neuroimage 90, 308–314. 10.1016/j.neuroimage.2013.12.032 24368262 [OpenAIRE] [PubMed] [DOI]

Budday S.Nay R.de Rooij R.Steinmann P.Wyrobek T.Ovaert T. C.. (2015). Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater.46, 318–330. 10.1016/j.jmbbm.2015.02.024 25819199 [OpenAIRE] [PubMed] [DOI]

Butcher D. T.Alliston T.Weaver V. M. (2009). A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122. 10.1038/nrc2544 19165226 [OpenAIRE] [PubMed] [DOI]

Chauvet D.Imbault M.Capelle L.Demene C.Mossad M.Karachi C.. (2016). In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall Med.37, 584–590. 10.1055/s-0034-1399152 25876221 [OpenAIRE] [PubMed] [DOI]

Christ A. F.Franze K.Gautier H.Moshayedi P.Fawcett J.Franklin R. J.. (2010). Mechanical difference betw een white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech.43, 2986–2992. 10.1016/j.jbiomech.2010.07.002 20656292 [OpenAIRE] [PubMed] [DOI]

D'Abaco G. M.Kaye A. H. (2007). Integrins: molecular determinants of glioma invasion. J. Clin. Neurosci. 14, 1041–1048. 10.1016/j.jocn.2007.06.019 17954373 [OpenAIRE] [PubMed] [DOI]

Daud M. F.Pawar K. C.Claeyssens F.Ryan A. J.Haycock J. W. (2012). An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33, 5901–5913. 10.1016/j.biomaterials.2012.05.008 22656449 [OpenAIRE] [PubMed] [DOI]

Delpech B.Maingonnat C.Girard N.Chauzy C.Maunoury R.Olivier A. (1993). Hyaluronan and hyaluronectin in the extracellular-matrix of human brain-tumor stroma. Eur. J. Cancer 29A, 1012–1017. 10.1016/S0959-8049(05)80214-X 7684596 [PubMed] [DOI]

East E.Golding J. P.Phillips J. B. (2009). A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. J. Tissue Eng. Regen. Med. 3, 634–646. 10.1002/term.209 19813215 [OpenAIRE] [PubMed] [DOI]

62 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue