publication . Article . 2015

Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

Joshua G.A Pinto; David G Jones; Kate eWilliams; Kathryn M Murphy; Kathryn M Murphy;
Open Access English
  • Published: 12 Feb 2015 Journal: Frontiers in Neural Circuits, volume 9 (eissn: 1662-5110, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly con...
Subjects
free text keywords: Neuroscience, Original Research Article, human cortex, synaptic proteins, development, rat cortex, visual cortex, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Sensory Systems, Cognitive Neuroscience, Cellular and Molecular Neuroscience, Neuroscience (miscellaneous), Synaptic plasticity, Synaptophysin, biology.protein, biology, Sensory cortex, medicine.anatomical_structure, medicine, Metaplasticity, Anatomy, Synapsin, Gephyrin, Neuroplasticity
Related Organizations
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
76 references, page 1 of 6

Aoki C. Miko I. Oviedo H. Mikeladze-Dvali T. Alexandre L. Sweeney N. . (2001). Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102 and SAP-97 at postsynaptic, presynaptic and nonsynaptic sites of adult and neonatal rat visual cortex. Synapse 40, 239–257. 10.1002/syn.1047 11309840 [OpenAIRE] [PubMed] [DOI]

Bähler M. Benfenati F. Valtorta F. Greengard P. (1990). The synapsins and the regulation of synaptic function. Bioessays 12, 259–263. 10.1002/bies.950120603 2117454 [OpenAIRE] [PubMed] [DOI]

Banks M. S. Aslin R. N. Letson R. D. (1975). Sensitive period for the development of human binocular vision. Science 190, 675–677. 10.1126/science.1188363 1188363 [OpenAIRE] [PubMed] [DOI]

Baroncelli L. Sale A. Viegi A. Maya Vetencourt J. F. De Pasquale R. Baldini S. . (2010). Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp. Neurol. 226, 100–109. 10.1016/j.expneurol.2010.08.009 20713044 [OpenAIRE] [PubMed] [DOI]

Bayés A. Collins M. O. Croning M. D. R. van de Lagemaat L. N. Choudhary J. S. Grant S. G. N. (2012). Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One 7:e46683. 10.1371/journal.pone.0046683 23071613 [OpenAIRE] [PubMed] [DOI]

Bayés A. Grant S. G. N. (2009). Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat. Rev. Neurosci. 10, 635–646. 10.1038/nrn2701 19693028 [OpenAIRE] [PubMed] [DOI]

Béïque J. C. Lin D. T. Kang M. G. Aizawa H. Takamiya K. Huganir R. L. (2006). Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl. Acad. Sci. U S A 103, 19535–19540. 10.1073/pnas.0608492103 17148601 [OpenAIRE] [PubMed] [DOI]

Ben-Ari Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739. 10.1038/nrn920 12209121 [OpenAIRE] [PubMed] [DOI]

Beston B. R. Jones D. G. Murphy K. M. (2010). Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front. Synaptic Neurosci. 2:138. 10.3389/fnsyn.2010.00138 21423524 [OpenAIRE] [PubMed] [DOI]

Blue M. E. Parnavelas J. G. (1983). The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12, 697–712. 10.1007/BF01181531 6619907 [PubMed] [DOI]

Braddick O. Atkinson J. Julesz B. Kropfl W. Bodis-Wollner I. Raab E. (1980). Cortical binocularity in infants. Nature 288, 363–365. 10.1038/288363a0 7432532 [OpenAIRE] [PubMed] [DOI]

Braddick O. Wattam-Bell J. Day J. Atkinson J. (1983). The onset of binocular function in human infants. Hum. Neurobiol. 2, 65–69. 6629875 [OpenAIRE] [PubMed]

Christie S. B. Miralles C. P. De Blas A. L. (2002). GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons. J. Neurosci. 22, 684–697. 11826098 [OpenAIRE] [PubMed]

Christopoulos A. Lew M. J. (2000). Beyond eyeballing: fitting models to experimental data. Crit. Rev. Biochem. Mol. Biol. 35, 359–391. 10.1080/10409230091169212 11099051 [OpenAIRE] [PubMed] [DOI]

Church D. M. Goodstadt L. Hillier L. W. Zody M. C. Goldstein S. She X. . (2009). Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 7:e1000112. 10.1371/journal.pbio.1000112 19468303 [OpenAIRE] [PubMed] [DOI]

76 references, page 1 of 6
Related research
Abstract
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly con...
Subjects
free text keywords: Neuroscience, Original Research Article, human cortex, synaptic proteins, development, rat cortex, visual cortex, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Sensory Systems, Cognitive Neuroscience, Cellular and Molecular Neuroscience, Neuroscience (miscellaneous), Synaptic plasticity, Synaptophysin, biology.protein, biology, Sensory cortex, medicine.anatomical_structure, medicine, Metaplasticity, Anatomy, Synapsin, Gephyrin, Neuroplasticity
Related Organizations
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
76 references, page 1 of 6

Aoki C. Miko I. Oviedo H. Mikeladze-Dvali T. Alexandre L. Sweeney N. . (2001). Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102 and SAP-97 at postsynaptic, presynaptic and nonsynaptic sites of adult and neonatal rat visual cortex. Synapse 40, 239–257. 10.1002/syn.1047 11309840 [OpenAIRE] [PubMed] [DOI]

Bähler M. Benfenati F. Valtorta F. Greengard P. (1990). The synapsins and the regulation of synaptic function. Bioessays 12, 259–263. 10.1002/bies.950120603 2117454 [OpenAIRE] [PubMed] [DOI]

Banks M. S. Aslin R. N. Letson R. D. (1975). Sensitive period for the development of human binocular vision. Science 190, 675–677. 10.1126/science.1188363 1188363 [OpenAIRE] [PubMed] [DOI]

Baroncelli L. Sale A. Viegi A. Maya Vetencourt J. F. De Pasquale R. Baldini S. . (2010). Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp. Neurol. 226, 100–109. 10.1016/j.expneurol.2010.08.009 20713044 [OpenAIRE] [PubMed] [DOI]

Bayés A. Collins M. O. Croning M. D. R. van de Lagemaat L. N. Choudhary J. S. Grant S. G. N. (2012). Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One 7:e46683. 10.1371/journal.pone.0046683 23071613 [OpenAIRE] [PubMed] [DOI]

Bayés A. Grant S. G. N. (2009). Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat. Rev. Neurosci. 10, 635–646. 10.1038/nrn2701 19693028 [OpenAIRE] [PubMed] [DOI]

Béïque J. C. Lin D. T. Kang M. G. Aizawa H. Takamiya K. Huganir R. L. (2006). Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl. Acad. Sci. U S A 103, 19535–19540. 10.1073/pnas.0608492103 17148601 [OpenAIRE] [PubMed] [DOI]

Ben-Ari Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739. 10.1038/nrn920 12209121 [OpenAIRE] [PubMed] [DOI]

Beston B. R. Jones D. G. Murphy K. M. (2010). Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front. Synaptic Neurosci. 2:138. 10.3389/fnsyn.2010.00138 21423524 [OpenAIRE] [PubMed] [DOI]

Blue M. E. Parnavelas J. G. (1983). The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12, 697–712. 10.1007/BF01181531 6619907 [PubMed] [DOI]

Braddick O. Atkinson J. Julesz B. Kropfl W. Bodis-Wollner I. Raab E. (1980). Cortical binocularity in infants. Nature 288, 363–365. 10.1038/288363a0 7432532 [OpenAIRE] [PubMed] [DOI]

Braddick O. Wattam-Bell J. Day J. Atkinson J. (1983). The onset of binocular function in human infants. Hum. Neurobiol. 2, 65–69. 6629875 [OpenAIRE] [PubMed]

Christie S. B. Miralles C. P. De Blas A. L. (2002). GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons. J. Neurosci. 22, 684–697. 11826098 [OpenAIRE] [PubMed]

Christopoulos A. Lew M. J. (2000). Beyond eyeballing: fitting models to experimental data. Crit. Rev. Biochem. Mol. Biol. 35, 359–391. 10.1080/10409230091169212 11099051 [OpenAIRE] [PubMed] [DOI]

Church D. M. Goodstadt L. Hillier L. W. Zody M. C. Goldstein S. She X. . (2009). Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 7:e1000112. 10.1371/journal.pbio.1000112 19468303 [OpenAIRE] [PubMed] [DOI]

76 references, page 1 of 6
Related research
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue