publication . Article . 2018

Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish

Kathryn Bambino; Chi Zhang; Christine Austin; Chitra Amarasiriwardena; Manish Arora; Jaime Chu; Kirsten C. Sadler;
Open Access English
  • Published: 01 Feb 2018 Journal: Disease Models & Mechanisms, volume 11, issue 2 (issn: 1754-8403, eissn: 1754-8411, Copyright policy)
  • Publisher: The Company of Biologists Ltd
Abstract
Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease.
Persistent Identifiers
Subjects
Medical Subject Headings: fungi
free text keywords: Zebra, Research Article, Arsenic, Ethanol, Fatty liver disease, Environmental exposure, Immunology and Microbiology (miscellaneous), General Biochemistry, Genetics and Molecular Biology, Medicine (miscellaneous), Neuroscience (miscellaneous), lcsh:Medicine, lcsh:R, lcsh:Pathology, lcsh:RB1-214, Liver disease, medicine.disease, medicine, Alcoholic liver disease, Unfolded protein response, Pharmacology, Chemistry, Fatty liver, Oxidative stress, medicine.disease_cause, Toxicity, Tunicamycin, chemistry.chemical_compound
Funded by
NIH| Research Training Program in Environmental Pediatrics
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5T32HD049311-12
  • Funding stream: EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT
,
NIH| Understanding fatty liver disease using the zebrafish mutant, foie gras
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1R01AA018886-01
  • Funding stream: NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM
,
NIH| Phenotyping and Stress Assessment Facility Core (PSAFC)
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1P30ES023515-01
  • Funding stream: NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES
115 references, page 1 of 8

Adams L. A. and Lindor K. D. (2007). Nonalcoholic fatty liver disease. Ann. Epidemiol. 17, 863-869. 10.1016/j.annepidem.2007.05.013 17728149 [PubMed] [DOI]

Adams S. V., Barrick B., Christopher E. P., Shafer M. M., Song X., Vilchis H., Newcomb P. A. and Ulery A. (2016). Urinary heavy metals in hispanics 40–85 years old in doña ana county, new mexico. Arch. Environ. Occup. Health 71, 338-346. 10.1080/19338244.2015.1129301 26666397 [OpenAIRE] [PubMed] [DOI]

Adebayo A. O., Zandbergen F., Kozul-Horvath C. D., Gruppuso P. A. and Hamilton J. W. (2015). Chronic exposure to low-dose arsenic modulates lipogenic gene expression in mice. J. Biochem. Mol. Toxicol. 29, 1-9. 10.1002/jbt.21600 25155036 [OpenAIRE] [PubMed] [DOI]

Adeyemi J. A., da Cunha Martins-Junior A. and Barbosa F.Jr. (2015). Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (danio rerio) co-exposed to arsenic and atrazine. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 172-173, 7-12. 10.1016/j.cbpc.2015.04.001 25882832 [OpenAIRE] [PubMed] [DOI]

Ahsan H., Chen Y., Parvez F., Argos M., Hussain A. I., Momotaj H., Levy D., Van Geen A., Howe G. and Graziano J. (2006). Health effects of arsenic longitudinal study (heals): Description of a multidisciplinary epidemiologic investigation. J. Expo. Sci. Environ. Epidemiol. 16, 191-205. 10.1038/sj.jea.7500449 16160703 [OpenAIRE] [PubMed] [DOI]

Aken B. L., Ayling S., Barrell D., Clarke L., Curwen V., Fairley S., Fernandez Banet J., Billis K., García Girón C., Hourlier T.et al. (2016). The ensembl gene annotation system. Database (Oxford) 2016, baw093 10.1093/database/baw093 27337980 [OpenAIRE] [PubMed] [DOI]

Al-Eryani L., Wahlang B., Falkner K. C., Guardiola J. J., Clair H. B., Prough R. A. and Cave M. (2015). Identification of environmental chemicals associated with the development of toxicant-associated fatty liver disease in rodents. Toxicol. Pathol. 43, 482-497. 10.1177/0192623314549960 25326588 [OpenAIRE] [PubMed] [DOI]

Anders S., Pyl P. T. and Huber W. (2015). Htseq--a python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169. 10.1093/bioinformatics/btu638 25260700 [OpenAIRE] [PubMed] [DOI]

Anelli T., Bergamelli L., Margittai E., Rimessi A., Fagioli C., Malgaroli A., Pinton P., Ripamonti M., Rizzuto R. and Sitia R. (2011). Ero1α regulates ca2+ fluxes at the endoplasmic reticulum–mitochondria interface (mam). Antioxid Redox Signal. 16, 1077-1087. 10.1089/ars.2011.4004 21854214 [OpenAIRE] [PubMed] [DOI]

Anstee Q. M. and Day C. P. (2015). The genetics of nonalcoholic fatty liver disease: Spotlight on pnpla3 and tm6sf2. Semin. Liver Dis. 35, 270-290. 10.1055/s-0035-1562947 26378644 [OpenAIRE] [PubMed] [DOI]

Argos M., Kalra T., Rathouz P. J., Chen Y., Pierce B., Parvez F., Islam T., Ahmed A., Rakibuz-Zaman M., Hasan R.et al. (2010). Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in bangladesh (heals): a prospective cohort study. Lancet 376, 252-258. 10.1016/S0140-6736(10)60481-3 20646756 [OpenAIRE] [PubMed] [DOI]

Ashraf N. U. and Sheikh T. A. (2015). Endoplasmic reticulum stress and oxidative stress in the pathogenesis of non-alcoholic fatty liver disease. Free Radic. Res. 49, 1405-1418. 10.3109/10715762.2015.1078461 26223319 [OpenAIRE] [PubMed] [DOI]

Bambino K. and Chu J. (2017). Chapter nine-zebrafish in toxicology and environmental health. In. Current Topics in Developmental Biology, Vol. 124 (ed. C. S.Kirsten), pp. 331-367. Oxford: Academic Press.

Benham A. M., Van Lith M., Sitia R. and Braakman I. (2013). Ero1–pdi interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philos. Trans. R. Soc. B Biol. Sci. 368, 20110403 10.1098/rstb.2011.0403 [OpenAIRE] [DOI]

Bolger A. M., Lohse M. and Usadel B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114-2120. 10.1093/bioinformatics/btu170 24695404 [OpenAIRE] [PubMed] [DOI]

115 references, page 1 of 8
Abstract
Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease.
Persistent Identifiers
Subjects
Medical Subject Headings: fungi
free text keywords: Zebra, Research Article, Arsenic, Ethanol, Fatty liver disease, Environmental exposure, Immunology and Microbiology (miscellaneous), General Biochemistry, Genetics and Molecular Biology, Medicine (miscellaneous), Neuroscience (miscellaneous), lcsh:Medicine, lcsh:R, lcsh:Pathology, lcsh:RB1-214, Liver disease, medicine.disease, medicine, Alcoholic liver disease, Unfolded protein response, Pharmacology, Chemistry, Fatty liver, Oxidative stress, medicine.disease_cause, Toxicity, Tunicamycin, chemistry.chemical_compound
Funded by
NIH| Research Training Program in Environmental Pediatrics
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5T32HD049311-12
  • Funding stream: EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT
,
NIH| Understanding fatty liver disease using the zebrafish mutant, foie gras
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1R01AA018886-01
  • Funding stream: NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM
,
NIH| Phenotyping and Stress Assessment Facility Core (PSAFC)
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1P30ES023515-01
  • Funding stream: NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES
115 references, page 1 of 8

Adams L. A. and Lindor K. D. (2007). Nonalcoholic fatty liver disease. Ann. Epidemiol. 17, 863-869. 10.1016/j.annepidem.2007.05.013 17728149 [PubMed] [DOI]

Adams S. V., Barrick B., Christopher E. P., Shafer M. M., Song X., Vilchis H., Newcomb P. A. and Ulery A. (2016). Urinary heavy metals in hispanics 40–85 years old in doña ana county, new mexico. Arch. Environ. Occup. Health 71, 338-346. 10.1080/19338244.2015.1129301 26666397 [OpenAIRE] [PubMed] [DOI]

Adebayo A. O., Zandbergen F., Kozul-Horvath C. D., Gruppuso P. A. and Hamilton J. W. (2015). Chronic exposure to low-dose arsenic modulates lipogenic gene expression in mice. J. Biochem. Mol. Toxicol. 29, 1-9. 10.1002/jbt.21600 25155036 [OpenAIRE] [PubMed] [DOI]

Adeyemi J. A., da Cunha Martins-Junior A. and Barbosa F.Jr. (2015). Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (danio rerio) co-exposed to arsenic and atrazine. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 172-173, 7-12. 10.1016/j.cbpc.2015.04.001 25882832 [OpenAIRE] [PubMed] [DOI]

Ahsan H., Chen Y., Parvez F., Argos M., Hussain A. I., Momotaj H., Levy D., Van Geen A., Howe G. and Graziano J. (2006). Health effects of arsenic longitudinal study (heals): Description of a multidisciplinary epidemiologic investigation. J. Expo. Sci. Environ. Epidemiol. 16, 191-205. 10.1038/sj.jea.7500449 16160703 [OpenAIRE] [PubMed] [DOI]

Aken B. L., Ayling S., Barrell D., Clarke L., Curwen V., Fairley S., Fernandez Banet J., Billis K., García Girón C., Hourlier T.et al. (2016). The ensembl gene annotation system. Database (Oxford) 2016, baw093 10.1093/database/baw093 27337980 [OpenAIRE] [PubMed] [DOI]

Al-Eryani L., Wahlang B., Falkner K. C., Guardiola J. J., Clair H. B., Prough R. A. and Cave M. (2015). Identification of environmental chemicals associated with the development of toxicant-associated fatty liver disease in rodents. Toxicol. Pathol. 43, 482-497. 10.1177/0192623314549960 25326588 [OpenAIRE] [PubMed] [DOI]

Anders S., Pyl P. T. and Huber W. (2015). Htseq--a python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169. 10.1093/bioinformatics/btu638 25260700 [OpenAIRE] [PubMed] [DOI]

Anelli T., Bergamelli L., Margittai E., Rimessi A., Fagioli C., Malgaroli A., Pinton P., Ripamonti M., Rizzuto R. and Sitia R. (2011). Ero1α regulates ca2+ fluxes at the endoplasmic reticulum–mitochondria interface (mam). Antioxid Redox Signal. 16, 1077-1087. 10.1089/ars.2011.4004 21854214 [OpenAIRE] [PubMed] [DOI]

Anstee Q. M. and Day C. P. (2015). The genetics of nonalcoholic fatty liver disease: Spotlight on pnpla3 and tm6sf2. Semin. Liver Dis. 35, 270-290. 10.1055/s-0035-1562947 26378644 [OpenAIRE] [PubMed] [DOI]

Argos M., Kalra T., Rathouz P. J., Chen Y., Pierce B., Parvez F., Islam T., Ahmed A., Rakibuz-Zaman M., Hasan R.et al. (2010). Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in bangladesh (heals): a prospective cohort study. Lancet 376, 252-258. 10.1016/S0140-6736(10)60481-3 20646756 [OpenAIRE] [PubMed] [DOI]

Ashraf N. U. and Sheikh T. A. (2015). Endoplasmic reticulum stress and oxidative stress in the pathogenesis of non-alcoholic fatty liver disease. Free Radic. Res. 49, 1405-1418. 10.3109/10715762.2015.1078461 26223319 [OpenAIRE] [PubMed] [DOI]

Bambino K. and Chu J. (2017). Chapter nine-zebrafish in toxicology and environmental health. In. Current Topics in Developmental Biology, Vol. 124 (ed. C. S.Kirsten), pp. 331-367. Oxford: Academic Press.

Benham A. M., Van Lith M., Sitia R. and Braakman I. (2013). Ero1–pdi interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philos. Trans. R. Soc. B Biol. Sci. 368, 20110403 10.1098/rstb.2011.0403 [OpenAIRE] [DOI]

Bolger A. M., Lohse M. and Usadel B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114-2120. 10.1093/bioinformatics/btu170 24695404 [OpenAIRE] [PubMed] [DOI]

115 references, page 1 of 8
Any information missing or wrong?Report an Issue