publication . Article . 2015

SOME PARADIGMS OF ARTIFICIAL INTELLIGENCE IN FINANCIAL COMPUTER SYSTEMS

Jerzy Balicki;
Open Access English
  • Published: 01 Dec 2015 Journal: Contemporary Economy (issn: 2082-677X, eissn: 2082-677X, Copyright policy)
  • Publisher: University of Gdansk
Abstract
The article discusses some paradigms of artificial intelligence in the context of their applications in computer financial systems. The proposed approach has a significant po-tential to increase the competitiveness of enterprises, including financial institutions. However, it requires the effective use of supercomputers, grids and cloud computing. A reference is made to the computing environment for Bitcoin. In addition, we characterized genetic programming and artificial neural networks to prepare investment strategies on the stock exchange market.
Subjects
free text keywords: financial information systems, paradigms of artificial intelligence, genetic programming, artificial neural networks, Economics as a science, HB71-74
Download from
60 references, page 1 of 4

1. Abe Y. et al.: Power and performance analysis of GPU-accelerated systems. Proc. of the 2012 USENIX Conf. on Power-Aware Computing and Systems (HotPower'12), USENIX Association, Berkeley, USA, 2012, pp. 10-18

2. Aldrich E., Fernández-Villaverde M., Gallant J.R., Rubio-Ramírez A., Juan F.: Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors, Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), 2011, pp. 386-393

3. Baesens B., Setiono R., Mues C., Vanthien J.: Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, Vol. 49, No. 3, March 2003, pp. 312-320 [OpenAIRE]

4. Balicka H., Balicki J., Korłub W., Paluszak J., Pastewski M., Przybyłek P., Zadroga M., Zakidalski M.: Metody sztucznej inteligencji do wspomagania bankowych systemów informatycznych. W: K. Kreft, D. Wach, J. Winiarski (red.): Systemy informatyczne w gospodarce. Wyd. Uniwersytetu Gdańskiego, Gdańsk 2013, ss. 125-138

5. Balicka H., Balicki J., Korłub W., Paluszak J., Zadroga M.: Superkomputery do wspomagania procesów gospodarczych ze szczególnym uwzględnieniem sektora bankowego. Współczesna Gospodarka, Vol. 4, Issue 5, 2014, ss. 1-15

6. Balicki J., Beringer M., Korłub W., Przybyłek P. , Tyszka M., Zadroga M.: Collective citizens' behavior modelling with support of the Internet of Things and Big Data. Proceedings of the 8th International Conference on Human-System-Interaction HSI'2015, Warsaw, Poland, June 25-27, 2015, pp. 61-67 [OpenAIRE]

7. Balicki J., Korłub W., Paluszak J. : Big data processing by volunteer computing supported by intelligent agents. Proc. of 6th International Conference, PReMI 2015, Warsaw, Poland, June 30 - July 3, 2015, Lecture Notes in Computer Science, Vol. 9124, pp. 268-278 [OpenAIRE]

8. Balicki J., Korłub W., Tyszka M. : Harmony search to self-configuration of fault-tolerant grids for big data. In: Z. Kowalczuk: Advances in Intelligent Systems and Computing, Vol. 386, 2016, pp. 411-424. [OpenAIRE]

9. Balicki J., Multi-criterion decision making by artificial intelligence techniques. Proc. on the 8th Int. Con. on Artificial Intelligence, Knowledge Engineering and Data Bases, February 2009, Cambridge, pp. 319-324

10. Balicki J., Przybyłek P., Zadroga M., Zakidalski M.: Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych. Współ- czesna Gospodarka, Vol. 4, 2013, ss. 1-14

11. Balicki J., Szymański J., Kępa M., Draszawka K., Korłub W.: Improving effectiveness of svm classifier for large scale data. Proceedings on 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Part I, Lecture Notes in Computer Science, Vol. 9119, pp. 675-686 [OpenAIRE]

12. Bandi N., Sun C., Agrawal D., El Abbadi A.: Hardware acceleration in commercial databases: A case study of spatial operations, 2004, pp. 1021-1032

13. Bechler A., Porównanie efektywności sieci neuronowych i modeli ekonometrycznych we wspomaganiu decyzji kredytowych, Zastosowania metod statystycznych w badaniach naukowych, StatSoft Polska, Kraków 2003

14. Bosse T., Siddiqui G.F., Treur J.: Supporting financial decision making by an intelligent agent estimating greed and risk. Proc. the IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technology, vol. 3, Aug. 31-Sept. 3 2010, pp. 365- 370

15. Brown C.: Technical analysis for the trading professional, Second Edition: Strategies and techniques for today's turbulent global financial markets. The McGrawHill Companies, New York 2011

60 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue