publication . Article . Other literature type . 2018

Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

He, Jun; Liu, Quansheng; Wu, Zhijun; Jiang, Yalong;
Open Access
  • Published: 29 May 2018 Journal: Energies, volume 11, page 1,380 (eissn: 1996-1073, Copyright policy)
  • Publisher: MDPI AG
One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM) is developed in this study to simulate the thermo-elastic fracturing of rocklike granular materials. The Voronoi tessellation is incorporated into the pre-processor of NMM to represent the grain structure. A contact-based heat transfer model ...
free text keywords: General Computer Science, Thermal, Heat transfer, Mechanics, Thermal conduction, Geothermal energy, business.industry, business, Engineering, Granular material, Geothermal gradient, Electronic engineering, Elasticity (economics), Numerical analysis, numerical manifold method, thermo-elastic fracturing, Voronoi tessellation, contact heat transfer, Technology, T
Related Organizations
Download fromView all 3 versions
Article . 2018
Provider: Crossref
Provider: UnpayWall
Article . 2018
50 references, page 1 of 4

1. Ghassemi, A. A review of some rock mechanics issues in geothermal reservoir development. Geotech. Geol. Eng. 2012, 30, 647-664. [CrossRef] [OpenAIRE]

2. Ranjith, P.G.; Viete, D.R.; Chen, B.J.; Perera, M.S.A. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng. Geol. 2012, 151, 120-127.

3. Yang, S.-Q.; Tian, W.-L.; Ranjith, P.G. Failure mechanical behavior of Australian Strathbogie granite at high temperatures: Insights from Particle Flow Modeling. Energies 2017, 10, 756. [CrossRef]

4. Peng, J.; Wong, L.N.Y.; Teh, C.I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J. Geophys. Res. Sol. Ea 2017, 122, 1054-1073. [CrossRef]

5. Yang, S.Q.; Huang, Y.H.; Tian, W.L.; Zhu, J.B. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Eng. Geol. 2017, 217, 35-48. [CrossRef]

6. Peng, J.; Rong, G.; Cai, M.; Yao, M.; Zhou, C. Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression. Int. J. Rock Mech. Min. 2016, 83, 135-139. [CrossRef]

7. He, J.; Liu, Q.S.; Wu, Z.J.; Xu, X.Y. Modelling transient heat conduction of granular materials by numerical manifold method. Eng. Anal. Bound. Elem. 2018, 86, 45-55. [CrossRef]

8. Burlayenko, V.N.; Altenbach, H.; Sadowski, T.; Dimitrova, S.D. Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate. Comp. Mater. Sci. 2016, 116, 11-21. [CrossRef]

9. Yvonnet, J.; He, Q.C.; Zhu, Q.Z.; Shao, J.F. A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput. Mater. Sci. 2011, 50, 1220-1224. [CrossRef]

10. Singh, A.; Singh, I.V.; Prakash, R. Meshless element free Galerkin method for unsteady nonlinear heat transfer problems. Int. J. Heat Mass Tranf. 2007, 50, 1212-1219. [CrossRef]

11. Gao, X.-W.; Zheng, B.-J.; Yang, K.; Zhang, C. Radial integration BEM for dynamic coupled thermoelastic analysis under thermal shock loading. Comput. Struct. 2015, 158, 140-147. [CrossRef]

12. Tang, S.B.; Tang, C.A.; Liang, Z.Z.; Zhang, Y.F. Influence of heterogeneity on strength and failure characterization of cement-based composite subjected to uniform thermal loading. Constr. Build. Mater. 2011, 25, 3382-3392. [CrossRef]

13. Wanne, T.S.; Young, R.P. Bonded-particle modeling of thermally fractured granite. Int. J. Rock Mech. Min. 2008, 45, 789-799. [CrossRef] [OpenAIRE]

14. Xia, M. An upscale theory of thermal-mechanical coupling particle simulation for non-isothermal problems in two-dimensional quasi-static system. Eng. Comput. 2015, 32, 2136-2165. [CrossRef]

15. Jiao, Y.Y.; Zhang, X.L.; Zhang, H.Q.; Li, H.B.; Yang, S.Q.; Li, J.C. A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses. Comput. Geotech. 2015, 67, 142-149. [CrossRef]

50 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue