publication . Article . Other literature type . 2015

A Robot Hand Testbed Designed for Enhancing Embodiment and Functional Neurorehabilitation of Body Schema in Subjects with Upper Limb Impairment or Loss

Randall B. Hellman; Eric Chang; Justin Tanner; Stephen I. Helms Tillery; Veronica J. Santos;
Open Access
  • Published: 01 Feb 2015
  • Publisher: Frontiers Media SA
  • Country: United States
Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech ...
Persistent Identifiers
Medical Subject Headings: body regions
free text keywords: Neuroscience, amputee, body schema, embodiment, hand, neurorehabilitation, phantom limb pain, robotic, upper limb, Technology Report, Neurosciences, Psychology, Cognitive Sciences, Experimental Psychology, Sensory system, Illusion, media_common.quotation_subject, media_common, Physical medicine and rehabilitation, medicine.medical_specialty, medicine, Proprioception, Somatosensory system, Computer science, Tactile sensor, Haptic technology, Simulation, lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry, lcsh:RC321-571
Funded by
NSF| CAREER: Primitives and Policies for Complex Behavior in Human and Robotic Hands
  • Funder: National Science Foundation (NSF)
  • Project Code: 0954254
  • Funding stream: Directorate for Computer & Information Science & Engineering | Division of Information and Intelligent Systems
NSF| CPS:Small:Cyber-physical system challenges in man-machine interfaces: context-dependent control of smart artificial hands through enhanced touch perception and mechatronic reflexes
  • Funder: National Science Foundation (NSF)
  • Project Code: 0932389
  • Funding stream: Directorate for Computer & Information Science & Engineering | Division of Computer and Network Systems
NSF| NRI-Small: Context-Driven Haptic Inquiry of Objects Based on Task Requirements for Artificial Grasp and Manipulation
  • Funder: National Science Foundation (NSF)
  • Project Code: 1208519
  • Funding stream: Directorate for Engineering | Division of Chemical, Bioengineering, Environmental, and Transport Systems
NIH| The adaptability of cortex in learning modified control algorithms for neuroprost
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01NS063372-03
66 references, page 1 of 5

Barnsley N. McAuley J. H. Mohan R. Dey A. Thomas P. Moseley G. L. (2011). The rubber hand illusion increases histamine reactivity in the real arm. Curr. Biol. 21, R945–R946.10.1016/j.cub.2011.10.039 [OpenAIRE] [DOI]

Belter J. T. Segil J. L. Dollar A. M. Weir R. F. (2013). Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev. 50, 599–617.10.1682/JRRD.2011.10.0188 24013909 [PubMed] [DOI]

Biddiss E. Beaton D. Chau T. (2007). Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2, 346–357.10.1080/17483 100701714733 19263565 [OpenAIRE] [PubMed] [DOI]

Biddiss E. A. Chau T. T. (2007a). Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31, 236–257.10.1080/03093640600994581 17979010 [OpenAIRE] [PubMed] [DOI]

Biddiss E. Chau T. (2007b). Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86, 977–987.10.1097/PHM.0b013e3181587f6c 18090439 [OpenAIRE] [PubMed] [DOI]

Botvinick M. Cohen J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature 391, 756.10.1038/35784 [OpenAIRE] [DOI]

Controzzi M. Cipriani C. Carrozza M. C. (2014). “Design of artificial hands: a review,” in The Human Hand as an Inspiration for Robot Hand Development, Vol. 95, eds Balasubramanian R. Santos V. J. (Cham: Springer International Publishing), 219–246.

D’Alonzo M. Cipriani C. (2012). Vibrotactile sensory substitution elicits feeling of ownership of an alien hand. PLoS ONE 7:e50756.10.1371/journal.pone.0050756 23226375 [OpenAIRE] [PubMed] [DOI]

Darnall B. D. (2009). Self-delivered home-based mirror therapy for lower limb phantom pain. Am. J. Phys. Med. Rehabil. 88, 78–81.10.1097/PHM.0b013e318191105b 19096290 [OpenAIRE] [PubMed] [DOI]

di Pellegrino G. Fadiga L. Fogassi L. Gallese V. Rizzolatti G. (1992). Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180.10.1007/BF00230027 1301372 [OpenAIRE] [PubMed] [DOI]

Dickstein R. Deutsch J. E. (2007). Motor imagery in physical therapist practice. Phys. Ther. 87, 942–953.10.2522/ptj.20060331 17472948 [OpenAIRE] [PubMed] [DOI]

Dietrich C. Walter-Walsh K. Preißler S. Hofmann G. O. Witte O. W. Miltner W. H. R. (2012). Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci. Lett. 507, 97–100.10.1016/j.neulet.2011.10.068 22085692 [OpenAIRE] [PubMed] [DOI]

Doubler J. A. Childress D. S. (1984). Design and evaluation of a prosthesis control system based on the concept of extended physiological proprioception. J. Rehabil. Res. Dev. 21, 19–31.6527287 [PubMed]

Elbert T. (2012). Pain from brain: can we remodel neural circuitry that generates phantom limb pain and other forms of neuropathic pain? Neurosci. Lett. 507, 95–96.10.1016/j.neulet.2011.12.004 [OpenAIRE] [DOI]

Farrell T. R. Weir R. F. (2007). The optimal controller delay for myoelectric prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 111–118.10.1109/TNSRE.2007.891391 17436883 [PubMed] [DOI]

66 references, page 1 of 5
Any information missing or wrong?Report an Issue