publication . Article . Other literature type . 2017

d(−) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

Pablo Alarcón; Carolina Manosalva; Carolina Manosalva; Ivan Conejeros; María D. Carretta; Tamara Muñoz-Caro; Liliana M. R. Silva; Anja Taubert; Carlos Hermosilla; María A. Hidalgo; ...
Open Access English
  • Published: 15 Aug 2017 Journal: Frontiers in Immunology, volume 8 (eissn: 1664-3224, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(−) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil...
Subjects
free text keywords: Immunology, Original Research, d(−) lactic acid, neutrophil adhesion, neutrophils, neutrophil extracellular traps, CD11b, ICAM-1, Immunologic diseases. Allergy, RC581-607, Monocarboxylate transporter 1, biology.protein, biology, Cell adhesion, Lactic acid, chemistry.chemical_compound, chemistry, Adhesion, Molecular biology, Integrin alpha M, Membrane transport, Biochemistry
95 references, page 1 of 7

1 Phillipson M Kubes P. The neutrophil in vascular inflammation. Nat Med (2011) 17(11):1381–90.10.1038/nm.2514 22064428 [OpenAIRE] [PubMed] [DOI]

2 Lee WL Harrison RE Grinstein S. Phagocytosis by neutrophils. Microbes Infect (2003) 5(14):1299–306.10.1016/j.micinf.2003.09.014 14613773 [OpenAIRE] [PubMed] [DOI]

3 Segal AW. How neutrophils kill microbes. Annu Rev Immunol (2005) 23:197–223.10.1146/annurev.immunol.23.021704.115653 15771570 [OpenAIRE] [PubMed] [DOI]

4 Segal AW Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci (1993) 18(2):43–7.10.1016/0968-0004(93)90051-N 8488557 [OpenAIRE] [PubMed] [DOI]

5 Brinkmann V Reichard U Goosmann C Fauler B Uhlemann Y Weiss DS Neutrophil extracellular traps kill bacteria. Science (2004) 303(5663):1532–5.10.1126/science.1092385 15001782 [OpenAIRE] [PubMed] [DOI]

6 Guimaraes-Costa AB Nascimento MT Wardini AB Pinto-da-Silva LH Saraiva EM. ETosis: a microbicidal mechanism beyond cell death. J Parasitol Res (2012) 2012:929743.10.1155/2012/929743 22536481 [OpenAIRE] [PubMed] [DOI]

7 Jenne CN Wong CH Zemp FJ McDonald B Rahman MM Forsyth PA Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe (2013) 13(2):169–80.10.1016/j.chom.2013.01.005 23414757 [OpenAIRE] [PubMed] [DOI]

8 Zawrotniak M Rapala-Kozik M Neutrophil extracellular traps (NETs) – formation and implications. Acta Biochim Pol (2013) 60(3):277–84.23819131 [PubMed]

9 Raftery MJ Lalwani P Krautkrmer E Peters T Scharffetter-Kochanek K Kruger R beta2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J Exp Med (2014) 211(7):1485–97.10.1084/jem.20131092 24889201 [OpenAIRE] [PubMed] [DOI]

10 Munoz-Caro T Mena Huertas SJ Conejeros I Alarcon P Hidalgo MA Burgos RA Eimeria bovis-triggered neutrophil extracellular trap formation is CD11b-, ERK 1/2-, p38 MAP kinase- and SOCE-dependent. Vet Res (2015) 46:23.10.1186/s13567-015-0155-6 25885264 [OpenAIRE] [PubMed] [DOI]

11 Silva LM Munoz-Caro T Burgos RA Hidalgo MA Taubert A Hermosilla C. Far beyond phagocytosis: phagocyte-derived extracellular traps act efficiently against protozoan parasites in vitro and in vivo. Mediators Inflamm (2016) 2016:5898074.10.1155/2016/5898074 27445437 [OpenAIRE] [PubMed] [DOI]

12 Arai Y Nishinaka Y Arai T Morita M Mizugishi K Adachi S Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation. Biochem Biophys Res Commun (2014) 443(2):556–61.10.1016/j.bbrc.2013.12.007 24326071 [OpenAIRE] [PubMed] [DOI]

13 Hakkim A Fuchs TA Martinez NE Hess S Prinz H Zychlinsky A Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol (2011) 7(2):75–7.10.1038/nchembio.496 21170021 [OpenAIRE] [PubMed] [DOI]

14 Gray RD Lucas CD Mackellar A Li F Hiersemenzel K Haslett C Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. J Inflamm (Lond) (2013) 10(1):12.10.1186/1476-9255-10-12 23514610 [OpenAIRE] [PubMed] [DOI]

15 Wang Y Li M Stadler S Correll S Li P Wang D Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol (2009) 184(2):205–13.10.1083/jcb.200806072 19153223 [OpenAIRE] [PubMed] [DOI]

95 references, page 1 of 7
Abstract
Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(−) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil...
Subjects
free text keywords: Immunology, Original Research, d(−) lactic acid, neutrophil adhesion, neutrophils, neutrophil extracellular traps, CD11b, ICAM-1, Immunologic diseases. Allergy, RC581-607, Monocarboxylate transporter 1, biology.protein, biology, Cell adhesion, Lactic acid, chemistry.chemical_compound, chemistry, Adhesion, Molecular biology, Integrin alpha M, Membrane transport, Biochemistry
95 references, page 1 of 7

1 Phillipson M Kubes P. The neutrophil in vascular inflammation. Nat Med (2011) 17(11):1381–90.10.1038/nm.2514 22064428 [OpenAIRE] [PubMed] [DOI]

2 Lee WL Harrison RE Grinstein S. Phagocytosis by neutrophils. Microbes Infect (2003) 5(14):1299–306.10.1016/j.micinf.2003.09.014 14613773 [OpenAIRE] [PubMed] [DOI]

3 Segal AW. How neutrophils kill microbes. Annu Rev Immunol (2005) 23:197–223.10.1146/annurev.immunol.23.021704.115653 15771570 [OpenAIRE] [PubMed] [DOI]

4 Segal AW Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci (1993) 18(2):43–7.10.1016/0968-0004(93)90051-N 8488557 [OpenAIRE] [PubMed] [DOI]

5 Brinkmann V Reichard U Goosmann C Fauler B Uhlemann Y Weiss DS Neutrophil extracellular traps kill bacteria. Science (2004) 303(5663):1532–5.10.1126/science.1092385 15001782 [OpenAIRE] [PubMed] [DOI]

6 Guimaraes-Costa AB Nascimento MT Wardini AB Pinto-da-Silva LH Saraiva EM. ETosis: a microbicidal mechanism beyond cell death. J Parasitol Res (2012) 2012:929743.10.1155/2012/929743 22536481 [OpenAIRE] [PubMed] [DOI]

7 Jenne CN Wong CH Zemp FJ McDonald B Rahman MM Forsyth PA Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe (2013) 13(2):169–80.10.1016/j.chom.2013.01.005 23414757 [OpenAIRE] [PubMed] [DOI]

8 Zawrotniak M Rapala-Kozik M Neutrophil extracellular traps (NETs) – formation and implications. Acta Biochim Pol (2013) 60(3):277–84.23819131 [PubMed]

9 Raftery MJ Lalwani P Krautkrmer E Peters T Scharffetter-Kochanek K Kruger R beta2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J Exp Med (2014) 211(7):1485–97.10.1084/jem.20131092 24889201 [OpenAIRE] [PubMed] [DOI]

10 Munoz-Caro T Mena Huertas SJ Conejeros I Alarcon P Hidalgo MA Burgos RA Eimeria bovis-triggered neutrophil extracellular trap formation is CD11b-, ERK 1/2-, p38 MAP kinase- and SOCE-dependent. Vet Res (2015) 46:23.10.1186/s13567-015-0155-6 25885264 [OpenAIRE] [PubMed] [DOI]

11 Silva LM Munoz-Caro T Burgos RA Hidalgo MA Taubert A Hermosilla C. Far beyond phagocytosis: phagocyte-derived extracellular traps act efficiently against protozoan parasites in vitro and in vivo. Mediators Inflamm (2016) 2016:5898074.10.1155/2016/5898074 27445437 [OpenAIRE] [PubMed] [DOI]

12 Arai Y Nishinaka Y Arai T Morita M Mizugishi K Adachi S Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation. Biochem Biophys Res Commun (2014) 443(2):556–61.10.1016/j.bbrc.2013.12.007 24326071 [OpenAIRE] [PubMed] [DOI]

13 Hakkim A Fuchs TA Martinez NE Hess S Prinz H Zychlinsky A Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol (2011) 7(2):75–7.10.1038/nchembio.496 21170021 [OpenAIRE] [PubMed] [DOI]

14 Gray RD Lucas CD Mackellar A Li F Hiersemenzel K Haslett C Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. J Inflamm (Lond) (2013) 10(1):12.10.1186/1476-9255-10-12 23514610 [OpenAIRE] [PubMed] [DOI]

15 Wang Y Li M Stadler S Correll S Li P Wang D Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol (2009) 184(2):205–13.10.1083/jcb.200806072 19153223 [OpenAIRE] [PubMed] [DOI]

95 references, page 1 of 7
Any information missing or wrong?Report an Issue