publication . Article . 2011

Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea

Axel Schippers; Anna Blazejak;
Open Access English
  • Published: 01 Dec 2011
  • Publisher: Lausanne : Frontiers Research Foundation
  • Country: Germany
Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were...
free text keywords: deep biosphere, real-time pcr, subsurface, odp, sulfate-reducing prokaryotes, apra, dsra, Microbiology, Original Research, QR1-502, Microbiology (medical), ddc:500, Sulfate, chemistry.chemical_compound, chemistry, Gene, Extreme environment, Mbsf, Bacteria, biology.organism_classification, biology, Ecology, Sediment, 16S ribosomal RNA, clone (Java method)
68 references, page 1 of 5

Agrawal A. Lal B. (2009). Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol. Ecol. 69, 301–312.10.1111/j.1574-6941.2009.00714.x 19527290 [OpenAIRE] [PubMed] [DOI]

Bahr M. Crump B. C. Klepac-Ceraj V. Teske A. Sogin M. L. Hobbie J. E. (2005). Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ. Microbiol. 7, 1175–1185.10.1111/j.1462-2920.2005.00796.x 16011754 [OpenAIRE] [PubMed] [DOI]

Ben-Dov E. Brenner A. Kushmaro A. (2007). Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microbiol. Ecol. 54, 439–451.10.1007/s00248-007-9233-2 [OpenAIRE] [DOI]

Blazejak A. Erseus C. Amann R. Dubilier N. (2005). Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl. Environ. Microbiol. 71, 1553–1561.10.1128/AEM.71.3.1553-1561.2005 15746360 [OpenAIRE] [PubMed] [DOI]

Blazejak A. Schippers A. (2010). High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol. Ecol. 72, 198–207.10.1111/j.1574-6941.2010.00838.x 20180854 [OpenAIRE] [PubMed] [DOI]

Böning P. Brumsack H.-J. Böttcher M. E. Schnetger B. Kriete C. Kallmeyer J. Borchers S. L. (2004). Geochemistry of Peruvian near-surface sediments. Geochim Cosmochim Acta 68, 4429–4451.10.1016/j.gca.2004.04.027 [OpenAIRE] [DOI]

Bottrell S. H. Böttcher M. E. Schippers A. Parkes R. J. Jørgensen B. B Raiswell R. Telling J. Gehre M. (2008). Abiotic sulfide oxidation via manganese fuels the deep biosphere. Goldschmidt Conference Abstracts. Geochim. Cosmochim. Acta 72(Suppl. 1), A102. [OpenAIRE]

Bottrell S. H. Parkes R. J. Cragg B. A. Raiswell R. (2000). Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. J. Geol. Soc. London 157, 711–714.10.1144/jgs.157.4.711 [OpenAIRE] [DOI]

Bustin S. A. Benes V. Garson J. A. Hellemans J. Huggett J. Kubista M. Mueller R. Nolan T. Pfaffl M. W. Shipley G. L. Vandesompele J. Wittwer C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622.10.1373/clinchem.2008.112797 19246619 [OpenAIRE] [PubMed] [DOI]

Castresana J. Moreira D. (1999). Respiratory chains in the last common ancestor of living organisms. J. Mol. Evol. 49, 453–460.10.1007/PL00006568 10486003 [PubMed] [DOI]

Dhillon A. Teske A. Dillon J. Stahl D. A. Sogin M. L. (2003). Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69, 2765–2772.10.1128/AEM.69.5.2765-2772.2003 12732547 [OpenAIRE] [PubMed] [DOI]

D’Hondt S. L. Jørgensen B. B. Miller D. J. Batzke A. Blake R. Cragg B. A. Cypionka H. Dickens G. R. Ferdelman T. G. Hinrichs K. U. Holm N. G. Mitterer R. Spivack A. Wang G. Bekins B. Engelen B. Ford K. Gettemy G. Rutherford S. D. Sass H. Skilbeck C. G. Aiello I. W. Guèrin G. House C. H. Inagaki F. Meister P. Naehr T. Niitsuma S. Parkes R. J. Schippers A. Smith D. C. Teske A. Wiegel J. Padilla C. N. Solis Acosta J. L. (2004). Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221.10.1126/science.1101155 15618510 [OpenAIRE] [PubMed] [DOI]

D’Hondt S. L. Jørgensen B, B. Miller D. J. Shipboard Scientific Party. (2003). Leg 201 Initial report – controls on microbial communities in deeply buried sediments, Eastern Equatorial Pacific and Peru margin. Proc. ODP, Init. Repts., 201: College Statio n, TX (Ocean 131 Drilling Program).10.2973/ [OpenAIRE] [DOI]

Engelen B. Ziegelmüller K. Wolf L. Köpke B. Gittel A. Cypionka H. Treude T. Nakagawa S. Inagaki F. Lever M. A. Steinsbu B. O. (2008). Fluids from the oceanic crust support microbial activities within the deep biosphere. Geomicrobiol. J. 25, 56–66.10.1080/01490450701829006 [OpenAIRE] [DOI]

Ferdelman T. G. Lee C. Pantoja S. Harder J. Bebout B. M. Fossing H. (1997). Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim. Cosmochim. Acta 61, 30 65–3079.10.1016/S0016-7037(97)00158-0 [OpenAIRE] [DOI]

68 references, page 1 of 5
Any information missing or wrong?Report an Issue