publication . Article . Other literature type . 2015

The power of using functional fMRI on small rodents to study brain pharmacology and disease

Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie;
Open Access English
  • Published: 21 Oct 2015 Journal: Frontiers in Pharmacology, volume 6 (issn: 1663-9812, Copyright policy)
  • Publisher: Frontiers Media S.A.
  • Country: Belgium
Abstract
Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the M...
Subjects
Medical Subject Headings: nervous system
free text keywords: Biology, Pharmacology. Therapy, Human medicine, Pharmacology, fMRI, rsfMRI, phMRI, BOLD, rodents, functional MRI, Therapeutics. Pharmacology, RM1-950, Review, Pharmacology (medical), Neural activity, Neural substrate, Haemodynamic response, Sensory stimulation therapy, Medicine, business.industry, business, Resting state fMRI, Disease, EEG-fMRI, Functional magnetic resonance imaging, medicine.diagnostic_test
Related Organizations
Funded by
EC| BRAINPATH
Project
BRAINPATH
Molecular Imaging of Brain Pathophysiology
  • Funder: European Commission (EC)
  • Project Code: 612360
  • Funding stream: FP7 | SP3 | PEOPLE
,
EC| INMIND
Project
INMIND
Imaging of Neuroinflammation in Neurodegenerative Diseases
  • Funder: European Commission (EC)
  • Project Code: 278850
  • Funding stream: FP7 | SP1 | HEALTH
Communities
Neuroinformatics
178 references, page 1 of 12

Adamczak J. M. Farr T. D. Seehafer J. U. Kalthoff D. Hoehn M. (2010). High field BOLD response to forepaw stimulation in the mouse. Neuroimage 51 704–712. 10.1016/j.neuroimage.2010.02.083 [OpenAIRE] [DOI]

Airaksinen A. M. Hekmatyar S. K. Jerome N. Niskanen J. P. Huttunen J. K. Pitkanen A. (2012). Simultaneous BOLD fMRI and local field potential measurements during kainic acid-induced seizures. Epilepsia 53 1245–1253. 10.1111/j.1528-1167.2012.03539.x [OpenAIRE] [DOI]

Airaksinen A. M. Niskanen J. P. Chamberlain R. Huttunen J. K. Nissinen J. Garwood M. (2010). Simultaneous fMRI and local field potential measurements during epileptic seizures in medetomidine-sedated rats using raser pulse sequence. Magn. Res on. Med. 64 1191–1199. 10.1002/mrm.22508 [OpenAIRE] [DOI]

Alonso Bde C. Makarova T. Hess A. (2011). On the use of alpha-chloralose for repeated BOLD fMRI measurements in rats. J. Neurosci. Methods 195 236–240. 10.1016/j.jneumeth.2010.12.010 [OpenAIRE] [DOI]

Alsop D. C. Detre J. A. Golay X. Gunther M. Hendrikse J. Hernandez-Garcia L. (2014). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn. Reson. Med. 73 102–116. 10.1002/mrm.25197 [OpenAIRE] [DOI]

Amaro E. Jr. Barker G. J. (2006). Study design in fMRI: basic principles. Brain Cogn. 60 220–232. 10.1016/j.bandc.2005.11.009 [OpenAIRE] [DOI]

Austin V. C. Blamire A. M. Allers K. A. Sharp T. Styles P. Matthews P. M. (2005). Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia. Neuroimage 24 92–100. 10.1016/j.neuroimage.2004.08.011 [OpenAIRE] [DOI]

Baker H. J. Lindsey J. R. Weisbroth S. H. (1979). “Housing to control research variables,” in The Laboratory Rat, Vol. I, Biology and Diseases eds Baker H. J. Lindsey J. R. Weisbroth S. H. (New York, NY: Academic Pres s).

Baliki M. N. Chang P. C. Baria A. T. Centeno M. V. Apkarian A. V. (2014). Resting-sate functional reorganization of the rat limbic system following neuropathic injury. Sci. Rep. 4:6186. 10.1038/srep06186 [OpenAIRE] [DOI]

Bandettini P. A. (2012). Twenty years of functional MRI: the science and the stories. Neuroimage 62 575–588. 10.1016/j.neuroimage.2012.04.026 [OpenAIRE] [DOI]

Becerra L. Pendse G. Chang P. C. Bishop J. Borsook D. (2011). Robust reproducible resting state networks in the awake rodent brain. PLoS ONE 6:e25701. 10.1371/journal.pone.0025701 [OpenAIRE] [DOI]

Beckmann C. F. Smith S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23 137–152. 10.1109/TMI.2003.822821 [DOI]

Ben-Ari Y. Tremblay E. Riche D. Ghilini G. Naquet R. (1981). Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6 1361–1391. 10.1016/0306-4522(81)90193-7 [OpenAIRE] [DOI]

Bernstein M. A. Huston J. 3rd. Ward H. A. (2006). Imaging artifacts at 3.0T. J. Magn. Reson. Imaging 24 735–746. 10.1002/jmri.20698 [OpenAIRE] [DOI]

Bernstein S. E. (1966). “Physiological characteristics,” Biology of the Laboratory Mouse, ed. Green E. L. (New York, NY: Dover Publications, Inc.).

178 references, page 1 of 12
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue