publication . Article . Other literature type . 2018

Nanotechnology for Cancer Therapy Based on Chemotherapy

Chen-Yang Zhao; Rui Cheng; Zhe Yang; Zhong-Min Tian;
Open Access English
  • Published: 01 Apr 2018 Journal: Molecules (issn: 1420-3049, Copyright policy)
  • Publisher: MDPI AG
Abstract
Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover, to achieve the accurate pre-diagnosis and real-time monitoring for tumor, the research of nano-theranostics, which integrates diagnosis with treatment process, is a promisi...
Subjects
free text keywords: chemotherapy, nanoparticles, combination therapy, theranostic nanoparticles, cancer, Organic chemistry, QD241-441, Review, medicine.disease, medicine, Nanotechnology, medicine.medical_treatment, Clinical research, Cancer therapy, Distribution (pharmacology), Chemistry, Treatment process
Download fromView all 4 versions
Molecules
Article . 2018
Molecules
Article . 2018
Provider: Crossref
Molecules
Article
Provider: UnpayWall
242 references, page 1 of 17

1. Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015, 73, 214-230. [CrossRef] [PubMed]

2. Jardim, G.; Lima, D.; Valença, W.; Lima, D.; Cavalcanti, B.; Pessoa, C.; Rafique, J.; Braga, A.; Jacob, C.; da Silva Júnior, E.; et al. Synthesis of Selenium-Quinone Hybrid Compounds with Potential Antitumor Activity via Rh-Catalyzed C-H Bond Activation and Click Reactions. Molecules 2017, 23, 83. [CrossRef] [PubMed]

3. Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014, 347, 159-166. [CrossRef] [PubMed]

4. Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52-79. [CrossRef] [PubMed]

5. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57-70. [CrossRef] [OpenAIRE]

6. Chow, E.K.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med. 2013, 5, 216rv4. [CrossRef] [PubMed]

7. Zhang, X.Q.; Xu, X.; Bertrand, N.; Pridgen, E.; Swami, A.; Farokhzad, O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 2012, 64, 1363-1384. [CrossRef] [PubMed]

8. Ramya, R.; Shruthilaya, M.; Akila, K.; Ganga, B.; Ramia, K.Y.; Roy, S.; Ponraju, D.; Kumar, R.S.; Ganesh, V. Nanomedicine: Towards development of patient-friendly drug-delivery systems for oncological applications. Int. J. Nanomed. 2012, 2012, 1043-1060. [OpenAIRE]

9. Davis, M.E.; Zhuo, G.C.; Dong, M.S. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771-782. [CrossRef] [PubMed]

10. Karageorgis, A.; Dufort, S.; Sancey, L.; Henry, M.; Hirsjãrvi, S.; Passirani, C.; Benoit, J.P.; Gravier, J.; Texier, I.; Montigon, O. An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors. Sci. Rep. 2016, 6, 21417. [CrossRef] [PubMed]

11. Yoo, J.W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521-535. [CrossRef] [PubMed]

12. Khare, R.; Li, J.; Lu, Z. LabeledIn: Cataloging labeled indications for human drugs. J. Biomed. Inform. 2014, 52, 448-456. [CrossRef] [PubMed]

13. Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238-252. [CrossRef] [OpenAIRE]

14. Jadia, R.; Scandore, C.; Rai, P. Nanoparticles for Effective Combination Therapy of Cancer. Int. J. Nanotechnol. Nanomed. 2016, 1.

15. Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16-20. [CrossRef] [PubMed]

242 references, page 1 of 17
Related research
Abstract
Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover, to achieve the accurate pre-diagnosis and real-time monitoring for tumor, the research of nano-theranostics, which integrates diagnosis with treatment process, is a promisi...
Subjects
free text keywords: chemotherapy, nanoparticles, combination therapy, theranostic nanoparticles, cancer, Organic chemistry, QD241-441, Review, medicine.disease, medicine, Nanotechnology, medicine.medical_treatment, Clinical research, Cancer therapy, Distribution (pharmacology), Chemistry, Treatment process
Download fromView all 4 versions
Molecules
Article . 2018
Molecules
Article . 2018
Provider: Crossref
Molecules
Article
Provider: UnpayWall
242 references, page 1 of 17

1. Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015, 73, 214-230. [CrossRef] [PubMed]

2. Jardim, G.; Lima, D.; Valença, W.; Lima, D.; Cavalcanti, B.; Pessoa, C.; Rafique, J.; Braga, A.; Jacob, C.; da Silva Júnior, E.; et al. Synthesis of Selenium-Quinone Hybrid Compounds with Potential Antitumor Activity via Rh-Catalyzed C-H Bond Activation and Click Reactions. Molecules 2017, 23, 83. [CrossRef] [PubMed]

3. Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014, 347, 159-166. [CrossRef] [PubMed]

4. Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52-79. [CrossRef] [PubMed]

5. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57-70. [CrossRef] [OpenAIRE]

6. Chow, E.K.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med. 2013, 5, 216rv4. [CrossRef] [PubMed]

7. Zhang, X.Q.; Xu, X.; Bertrand, N.; Pridgen, E.; Swami, A.; Farokhzad, O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 2012, 64, 1363-1384. [CrossRef] [PubMed]

8. Ramya, R.; Shruthilaya, M.; Akila, K.; Ganga, B.; Ramia, K.Y.; Roy, S.; Ponraju, D.; Kumar, R.S.; Ganesh, V. Nanomedicine: Towards development of patient-friendly drug-delivery systems for oncological applications. Int. J. Nanomed. 2012, 2012, 1043-1060. [OpenAIRE]

9. Davis, M.E.; Zhuo, G.C.; Dong, M.S. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771-782. [CrossRef] [PubMed]

10. Karageorgis, A.; Dufort, S.; Sancey, L.; Henry, M.; Hirsjãrvi, S.; Passirani, C.; Benoit, J.P.; Gravier, J.; Texier, I.; Montigon, O. An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors. Sci. Rep. 2016, 6, 21417. [CrossRef] [PubMed]

11. Yoo, J.W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521-535. [CrossRef] [PubMed]

12. Khare, R.; Li, J.; Lu, Z. LabeledIn: Cataloging labeled indications for human drugs. J. Biomed. Inform. 2014, 52, 448-456. [CrossRef] [PubMed]

13. Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238-252. [CrossRef] [OpenAIRE]

14. Jadia, R.; Scandore, C.; Rai, P. Nanoparticles for Effective Combination Therapy of Cancer. Int. J. Nanotechnol. Nanomed. 2016, 1.

15. Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16-20. [CrossRef] [PubMed]

242 references, page 1 of 17
Related research
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue