publication . Article . 2018

Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

Gregory M. Dick; Ravi Namani; Bhavesh Patel; Ghassan S. Kassab;
Open Access English
  • Published: 01 May 2018 Journal: Frontiers in Physiology (issn: 1664-042X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic data with standard criteria; (b) assign results to diameter categories defined by morphometry; and (c) use our novel multiscale flow model to determine the extent to which ex...
Subjects
free text keywords: arteriole, microcirculation, smooth muscle, myography, coronary blood flow, Physiology, QP1-981, Original Research, Physiology (medical), Ex vivo, Biology, Endocrinology, medicine.medical_specialty, medicine, Blood flow, Myogenic contraction, Cardiology, Electrical impedance myography, In vivo, medicine.artery, Autoregulation, Internal medicine
Funded by
NIH| Coronary Blood Flow: Integrated Theory and Experiments
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5U01HL118738-04
  • Funding stream: NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
57 references, page 1 of 4

Algranati D.Kassab G. S.Lanir Y. (2010). Mechanisms of myocardium-coronary vessel interaction. Am. J. Physiol. Heart Circ. Physiol. 298, H861–H873. 10.1152/ajpheart.00925.2009 19966048 [OpenAIRE] [PubMed] [DOI]

Bayliss W. M. (1902). On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. 28, 220–231. 10.1113/jphysiol.1902.sp000911 16992618 [OpenAIRE] [PubMed] [DOI]

Berwick Z. C.Moberly S. P.Kohr M. C.Morrical E. B.Kurian M. M.Dick G. M.. (2012). Contribution of voltage-dependent K+ and Ca 2+ channels to coronary pressure-flow autoregulation. Basic Res. Cardiol.107:264. 10.1007/s00395-012-0264-6 22466959 [OpenAIRE] [PubMed] [DOI]

Borgstrom P.Gestrelius S. (1987). Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow. Microvasc. Res. 33, 353–376. 10.1016/0026-2862(87)90028-8 3613984 [OpenAIRE] [PubMed] [DOI]

Burg M.Grantham J.Abramow M.Orloff J. (1966). Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210, 1293–1298. 10.1152/ajplegacy.1966.210.6.1293 5923067 [OpenAIRE] [PubMed] [DOI]

Carlson B. E.Arciero J. C.Secomb T. W. (2008). Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am. J. Physiol. Heart Circ. Physiol. 295, H1572–H1579. 10.1152/ajpheart.00262.2008 18723769 [OpenAIRE] [PubMed] [DOI]

Carlson B. E.Secomb T. W. (2005). A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. Microcirculation 12, 327–338. 10.1080/10739680590934745 16020079 [OpenAIRE] [PubMed] [DOI]

Chilian W. M. (1991). Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ. Res. 69, 561–570. 10.1161/01.RES.69.3.561 1873859 [PubMed] [DOI]

Chilian W. M.Layne S. M. (1990). Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion. Circ. Res. 66, 1227–1238. 10.1161/01.RES.66.5.1227 2335023 [PubMed] [DOI]

Cornelissen A. J.Dankelman J.VanBavel E.Spaan J. A. (2002). Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am. J. Physiol. Heart Circ. Physiol. 282, H2224–H2237. 10.1152/ajpheart.00491.2001 12003832 [OpenAIRE] [PubMed] [DOI]

Cornelissen A. J.Dankelman J.VanBavel E.Stassen H. G.Spaan J. A. (2000). Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am. J. Physiol. Heart Circ. Physiol. 278, H1490–H1499. 10.1152/ajpheart.2000.278.5.H1490 10775126 [OpenAIRE] [PubMed] [DOI]

Davis M. J. (2012). Perspective: physiological role(s) of the vascular myogenic response. Microcirculation 19, 99–114. 10.1111/j.1549-8719.2011.00131.x 21895845 [OpenAIRE] [PubMed] [DOI]

DeFily D. V.Chilian W. M. (1995). Coronary microcirculation: autoregulation and metabolic control. Basic Res. Cardiol. 90, 112–118. 10.1007/BF00789441 7646415 [OpenAIRE] [PubMed] [DOI]

Dole W. P. (1987). Autoregulation of the coronary circulation. Prog. Cardiovasc. Dis. 29, 293–323. 10.1016/S0033-0620(87)80005-1 3809516 [PubMed] [DOI]

Duling B. R.Gore R. W.Dacey R. G.Jr.Damon D. N. (1981). Methods for isolation, cannulation, and in vitro study of single microvessels. Am. J. Physiol. 241, H108–H116. 10.1152/ajpheart.1981.241.1.H108 7195654 [OpenAIRE] [PubMed] [DOI]

57 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2018

Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

Gregory M. Dick; Ravi Namani; Bhavesh Patel; Ghassan S. Kassab;