Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Copenhagen Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
F1000Research
Article . 2021 . Peer-reviewed
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

netDx:Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks [version 2; peer review: 2 approved]

Authors: Pai, Shraddha; Weber, Philipp; Isserlin, Ruth; Kaka, Hussam; Hui, Shirley; Shah, Muhammad Ahmad; Giudice, Luca; +4 Authors

netDx:Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks [version 2; peer review: 2 approved]

Abstract

Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data – a common problem in real-world data – without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data.

Country
Denmark
Keywords

Science, Precision medicine, Q, R, Medicine, 006, Data integration, Genomics, Networks, Classification, Supervised learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold