Downloads provided by UsageCounts
handle: 2117/362095 , 11441/104390
One of the main challenges researchers face is to identify the most relevant features in a prediction model. As a consequence, many regularized methods seeking sparsity have flourished. Although sparse, their solutions may not be interpretable in the presence of spurious coefficients and correlated features. In this paper we aim to enhance interpretability in linear regression in presence of multicollinearity by: (i) forcing the sign of the estimated coefficients to be consistent with the sign of the correlations between predictors, and (ii) avoiding spurious coefficients so that only significant features are represented in the model. This will be addressed by modelling constraints and adding them to an optimization problem expressing some estimation procedure such as ordinary least squares or the lasso. The so-obtained constrained regression models will become Mixed Integer Quadratic Problems. The numerical experiments carried out on real and simulated datasets show that tightening the search space of some standard linear regression models by adding the constraints modelling (i) and/or (ii) help to improve the sparsity and interpretability of the solutions with competitive predictive quality.
Peer Reviewed
Estadística matemàtica, Classificació AMS::90 Operations research, Classificació AMS::62 Statistics::62J Linear inference, mathematical programming::90C Mathematical programming, Cardinality constraint, sparsity, Classificació AMS::62 Statistics::62J Linear inference, regression, :90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, cardinality constraint, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], Mixed integer non linear programming, :62 Statistics::62J Linear inference, regression [Classificació AMS], linear regression, Programació (Matemàtica), regression, Mixed Integer Non Linear Programming, multicollinearity, Linear regression, Multicollinearity, Sparsity, mixed integer non linear programming
Estadística matemàtica, Classificació AMS::90 Operations research, Classificació AMS::62 Statistics::62J Linear inference, mathematical programming::90C Mathematical programming, Cardinality constraint, sparsity, Classificació AMS::62 Statistics::62J Linear inference, regression, :90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, cardinality constraint, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], Mixed integer non linear programming, :62 Statistics::62J Linear inference, regression [Classificació AMS], linear regression, Programació (Matemàtica), regression, Mixed Integer Non Linear Programming, multicollinearity, Linear regression, Multicollinearity, Sparsity, mixed integer non linear programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 30 | |
| downloads | 23 |

Views provided by UsageCounts
Downloads provided by UsageCounts