Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship@Westernarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scholarship@Western
Other literature type . 2021
License: CC BY
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Study of The Deep Learning-based Monitoring and Efficient Numerical Modeling Methodologies for Crystallization Processes

Authors: Wu, Yuanyi;

A Study of The Deep Learning-based Monitoring and Efficient Numerical Modeling Methodologies for Crystallization Processes

Abstract

Driven by the increasing demands of producing consistent and high-quality crystals for high value-added products such as pharmaceutical ingredients, the operation and design of a crystallization process have phased from an empirical trial-and-error approach to the modern frameworks powered by the online process analytical technologies (PATs) and model-based process optimization techniques. The one-dimensional crystal size distribution (CSD) measured by the well-established PATs is inadequate due to the missing particle morphology information. A major contribution of this thesis is to develop an image analysis-based PAT powered by the deep learning image processing techniques, whose accuracy and functionality outperformed the traditional PATs and other image analysis techniques. The PAT was deployed to monitor and study the slurry mixture of glass beads and catalyst particles as well as a taurine-water batch crystallization process. The results confirmed the superb accuracy of two-dimensional size and shape characterization in a challengingly high solids concentration. The classification capability enabled unparalleled functionalities including quantification of agglomeration level and characterization of different polymorphs based on their distinct appearances. A computerized crystallization platform was built with the developed PAT, which could automate the time-consuming experiments for determining the metastable zone width (MSZW) and induction time of a crystallization system. The application of the PAT revealed the potential to simplify and speed up the research and development stage of a crystallization process. The rich two-dimensional crystal size and shape information provided by our PAT enabled more descriptive multi-dimensional modeling for the better prediction of the crystallization process. The novel population array (PA) solver developed in this thesis could solve the multi-dimensional crystallization population balance equation (PBE) more computationally efficient than the existing discretization-based numerical methods without compromising the accuracy. The PA solver could accurately model the complex phenomena including agglomeration, breakage, and size-dependent growth. The efficient computation enables solving the complex multi-dimensional PBE for crystal morphology modeling. The combination of the innovative PAT and modeling technique is a significant contribution to the crystallization field that enables better understanding and more effective control of a crystallization process.

Related Organizations
Keywords

Shape and size characterization, Process Control and Systems, Deep learning Image analysis, Solution of population balance equation, Crystallization process, Process analytical technology, 543, Automated experiments

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green