
handle: 11693/15260 , 11693/16186
Bu tezde, videolardaki insan eylemlerini tanımak için anahtar kareye dayalı bir poztemsilinden faydalanılmaktadır. İnsan figürünün oluşturduğu pozun, bir kare içerisinde devameden eylemi tanımlamak için çok güçlü bir kaynak olduğunu düşünüyoruz. Her eylem, oeylemin gerçekleştiği süre içerisinde insan vücudunun parçalarının oluşturduğu bütün uzamsaldüzenleşimleri içeren bir kare grubuyla temsil edilebilir. `Anahtar Kare` olarakadlandırdığımız bu kare grubu bir eylemi diğerlerinden ayırt eder. `Anahtar Kare`leri seçmekiçin, insan figürünü oluşturan çizgilerle beraber bir şekil eşleme metodu kullanarak, verileniki kare üzerindeki pozların arasında bir benzerlik değeri tanımlıyoruz. Bir kümelemealgoritması kullanarak, her eylemin benzer karelerini belirli bir sayıda kümede grupluyor vebu grupların ağırlık merkezlerini `Anahtar Kare` olarak kullanıyoruz. Dahası, insan figürünüoluşturan çizgilerin hareketlerini video dizisi boyunca takip ederek, eylem içerisindekidevinim bilgisinden de faydalanıyoruz. Weizmann ve KTH verisetleri üzerinde elde ettiğimizsonuçlar, `Anahtar Kare` bazlı yaklaşımımızın insan hareketlerini temsil etme ve tanımadakietkinliğini göstermektedir.
This thesis utilizes a key-pose based representation to recognize human actions in videos. Webelieve that the pose of the human figure is a powerful source for describing the nature of theongoing action in a frame. Each action can be represented by a unique set of frames thatinclude all the possible spatial configurations of the human body parts throughout the time theaction is performed. Such set of frames for each action referred as `key poses` uniquelydistinguishes that action from the rest. For extracting `key poses`, we define a similarity valuebetween the poses in a pair of frames by using the lines forming the human figure along witha shape matching method. By the help of a clustering algorithm, we group the similar framesof each action into a number of clusters and use the medoids as `key poses` for that action.Moreover, in order to utilize the motion information present in the action, we include simpleline displacement vectors for each frame in the `key poses` selection process. Experiments onWeizmann and KTH datasets show the effectiveness of our key-pose based approach inrepresenting and recognizing human actions.
57
Pose similarity, Image processing--Digital techniques, Computer simulation., Pattern recognition systems, Human locomotion--Computer simulation., Computer simulation, Digital computer vision, Action recognition, Pose matching, Computer Engineering and Computer Science and Control, 004, Human motion, Key-pose, QP301 .K87 2011, Image processing--Digital techniques., Digital computer vision., Human--Computer simulation, Body, Body, Human--Computer simulation., Human locomotion--Computer simulation, Pattern recognition systems., Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol
Pose similarity, Image processing--Digital techniques, Computer simulation., Pattern recognition systems, Human locomotion--Computer simulation., Computer simulation, Digital computer vision, Action recognition, Pose matching, Computer Engineering and Computer Science and Control, 004, Human motion, Key-pose, QP301 .K87 2011, Image processing--Digital techniques., Digital computer vision., Human--Computer simulation, Body, Body, Human--Computer simulation., Human locomotion--Computer simulation, Pattern recognition systems., Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
