Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL Descartesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Conference object . 2025
License: CC BY
Data sources: HAL Descartes
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Conference object . 2025
License: CC BY
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hypoellipticité de polynômes de champs de vecteurs et conjectures de Helffer etNourrigat

d’après I. Androulidakis, O. Mohsen et R. Yuncken
Authors: Debord, Claire;

Hypoellipticité de polynômes de champs de vecteurs et conjectures de Helffer etNourrigat

Abstract

On étudie ici la géométrie sous-riemannienne sur une variété $M$ induite par une famille finie $F$ de champs de vecteurs satisfaisant la condition de Hörmander,ainsi que les opérateurs différentiels obtenus comme polynômes en les éléments de $F$. Un tel opérateur $D$ est hypoelliptique si, pour toute fonction lisse $f$, les solutions u de l’équation $Du=f$ sont, elles aussi, lisses. Une notion plus fine, celle des opérateurs hypoelliptiques maximaux, étend cette propriété en termes de régularité Sobolev, offrant un parallèle, en géométrie sous-riemannienne, aux opérateurs elliptiques.En 1979, Helffer et Nourrigat ont proposé une conjecture caractérisant l’hypoellipticité maximale, généralisant le théorème principal de régularité des opérateurs elliptiques. Cette conjecture a été récemment confirmée grâce à des outils de géométrie non commutative. Un élément central de ce travail est une généralisation naturelle en géométrie sous-riemannienne, introduite par Mohsen, du groupoïde tangent de Connes, dans lequel apparaissent tous les cônes tangents, ingrédients clés dans le travail de Helffer et Nourrigat. En collaboration avec Androulidakis et Yuncken, Mohsen a développé un calcul pseudodifférentiel dans ce contexte, introduisant notamment la notion de symbole principal. Ils obtiennent que l’inversibilité de ce symbole équivaut à l’hypoellipticité maximale, validant ainsi la conjecture.Cet exposé présentera les ingrédients et les grandes lignes de ces avancées novatrices.

We study here the sub-Riemannian geometry on a manifold $M$ induced by a finite family $F$ of vector fields satisfying the Hörmander condition, as well as the differential operators obtained as polynomials in the elements of $F$. Such an operator $D$ is hypoelliptic if, for any smooth function $f$, the solutions $u$ of the equation $Du=f$ are also smooth. A more refined notion, that of maximal hypoelliptic operators, extends this property in terms of Sobolev regularity, offering a parallel in sub-Riemannian geometry to elliptic operators.In 1979, Helffer and Nourrigat proposed a conjecture characterizing maximal hypoellipticity, generalizing the main regularity theorem for elliptic operators. This conjecture has recently been confirmed using tools from non-commutative geometry. A central element of this work is a natural generalisation in sub-Riemannian geometry, introduced by Mohsen, of the Connes tangent groupoid, in which appear all the tangent cones, key ingredients in the work of Helffer and Nourrigat. In collaboration with Androulidakis and Yuncken, Mohsen developed a pseudodifferential calculus in this context, introducing in particular the notion of principal symbol.They obtained that the invertibility of this symbol is equivalent to maximal hypoellipticity, thus validating the conjecture.This talk will present the ingredients and broad outlines of these innovative advances.

Keywords

Groupoïdes de Lie, Calculs pseudodifferentiels, [MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP], Cônes tangents, [MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA], [MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG], Opérateurs hypoelliptiques

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green