The asymptotic expansion method via symbolic computation

Other literature type, Article English OPEN
Navarro, Juan F.;
(2012)

This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomial... View more
  • References (17)
    17 references, page 1 of 2

    Poincaré, H.. Les Méthodes nouvelles de la Mécanique Céleste, Tome I. 1892

    Henrard, J.. A survey of Poisson series processors. Celestial Mechanics. 1988; 45 (1–3): 245-253

    Deprit, A., Henrard, J., Rom, A.. La théorie de la lune de Delaunay et son prolongement. Comptes Rendus de l'Academie des Sciences Paris A. 1970; 271: 519-520

    Deprit, A., Henrard, J., Rom, A.. Analytical lunar ephemeris: Delaunay's theory. The Astronomical Journal. 1971; 76: 269-272

    Henrard, J.. A new solution to the main problem of Lunar theory. Celestial Mechanics. 1979; 19 (4): 337-355

    Chapront-Touzé, M.. La solution ELP du problème central de la Lune. Astronomy & Astrophysics. 1980; 83: 86

    Chapront-Touzé, M.. Progress in the analytical theories for the orbital motion of the Moon. Celestial Mechanics. 1982; 26 (1): 53-62

    Navarro, J. F., Ferrándiz, J. M.. A new symbolic processor for the Earth rotation theory. Celestial Mechanics & Dynamical Astronomy. 2002; 82 (3): 243-263

    Abad, A., Elipe, A., San-Juan, J. F., Serrano, S.. Is symbolic integration better than numerical integration in satellite dynamics?. Applied Mathematics Letters. 2004; 17 (1): 59-63

    Arnold, V. I.. Ordinary Differential Equations. 1973

  • Metrics
Share - Bookmark