publication . Article . 2016

Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

Xin Zhang; Fei Xie; Baobei Lv; Pengxiang Zhao; Xuemei Ma;
Open Access English
  • Published: 01 Sep 2016 Journal: Frontiers in Microbiology, volume 7 (issn: 1664-302X, eissn: 1664-302X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE) assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA), H272 and 272Y of the Succinate dehydrogenase iron–sulfur subunit gene (SdhB), I365 and 365S of the putative osmosensor histidine kinase gene (BcOS1), and F412 and 412S of the 3-ketoreductase gene (erg27). This assay was first est...
Subjects
free text keywords: Botrytis cinerea, suspension array, fungicide resistance, Microbiology, multiplex detection, ASPE PCR, QR1-502, Original Research
42 references, page 1 of 3

Agbagwa I. O. Datta S. Patil P. G. Singh P. Nadarajan N. (2012). A protocol for high-quality genomic DNA extraction from legumes. Genet. Mol. Res. 11 4632–4639. 10.4238/2012.September.14.1 [DOI]

Banno S. Fukumori F. Ichiishi A. Okada K. Uekusa H. Kimura M. (2008). Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays. Phytopathology 98 397–404. 10.1094/PHYTO-98-4-0397 [DOI]

Bardas G. A. Veloukas T. Koutita O. Karaoglanidis G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag. Sci. 66 967–973. 10.1002/ps.1968 [DOI]

Billard A. Laval V. Fillinger S. Leroux P. Lachaise H. Beffa R. (2012). The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA. Appl. Environ. Microbiol. 78 1063–1068. 10.1128/AEM.06957-11 [OpenAIRE] [DOI]

Chatzidimopoulos M. Ganopoulos I. Vellios E. Madesis P. Tsaftaris A. Pappas A. C. (2014). Development of a two-step high-resolution melting (HRM) analysis for screening sequence variants associated with resistance to the QoIs, benzimidazoles and dicarboximides in airborne inoculum of Botrytis cinerea. FEMS Microbiol. Lett. 360 126–131. 10.1111/1574-6968.12594 [DOI]

Cui W. Beever R. E. Parkes S. L. Templeton M. D. (2004). Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94 1129–1135. 10.1094/PHYTO.2004.94.10.1129 [DOI]

Cui W. Beever R. E. Parkes S. L. Weeds P. L. Templeton M. D. (2002). An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet. Biol. 36 187–198. 10.1016/S1087-1845(02)00009-9 [DOI]

De Miccolis A. R. Masiello M. Rotolo C. Pollastro S. Faretra F. (2014). Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea). Pest Manag. Sci. 70 1884–1893. 10.1002/ps.3748 [DOI]

De Miccolis A. R. Rotolo C. Masiello M. Pollastro S. Ishii H. Faretra F. (2012). Genetic analysis and molecular characterisation of laboratory and field mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to QoI fungicides. Pest Manag. Sci. 68 1231–1240. 10.1002/ps.3281 [DOI]

Dean R. Van Kan J. A. Pretorius Z. A. Hammond-Kosack K. E. Di Pietro A. Spanu P. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13 414–430. 10.1111/j.1364-3703.2011.00783.x [DOI]

Debieu D. Bach J. Montesinos E. Fillinger S. Leroux P. (2013). Role of sterol 3-ketoreductase sensitivity in susceptibility to the fungicide fenhexamid in Botrytis cinerea and other phytopathogenic fungi. Pest Manag. Sci. 69 642–651. 10.1002/ps.3418 [OpenAIRE] [DOI]

Dunbar S. A. (2006). Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta 363 71–82. 10.1016/j.cccn.2005.06.023 [DOI]

Dunbar S. A. Jacobson J. W. (2007). Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array. Methods Mol. Biol. 394 1–19. 10.1007/978-1-59745-512-1_1 [DOI]

Fernandez-Ortuno D. Grabke A. Li X. Schnabel G. (2015). Independent emergence of resistance to seven chemical classes of fungicides in Botrytis cinerea. Phytopathology 105 424–432. 10.1094/PHYTO-06-14-0161-R [DOI]

Fillinger S. Ajouz S. Nicot P. C. Leroux P. Bardin M. (2012). Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS ONE 7:e42520. 10.1371/journal.pone.0042520 [OpenAIRE] [DOI]

42 references, page 1 of 3
Abstract
A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE) assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA), H272 and 272Y of the Succinate dehydrogenase iron–sulfur subunit gene (SdhB), I365 and 365S of the putative osmosensor histidine kinase gene (BcOS1), and F412 and 412S of the 3-ketoreductase gene (erg27). This assay was first est...
Subjects
free text keywords: Botrytis cinerea, suspension array, fungicide resistance, Microbiology, multiplex detection, ASPE PCR, QR1-502, Original Research
42 references, page 1 of 3

Agbagwa I. O. Datta S. Patil P. G. Singh P. Nadarajan N. (2012). A protocol for high-quality genomic DNA extraction from legumes. Genet. Mol. Res. 11 4632–4639. 10.4238/2012.September.14.1 [DOI]

Banno S. Fukumori F. Ichiishi A. Okada K. Uekusa H. Kimura M. (2008). Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays. Phytopathology 98 397–404. 10.1094/PHYTO-98-4-0397 [DOI]

Bardas G. A. Veloukas T. Koutita O. Karaoglanidis G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag. Sci. 66 967–973. 10.1002/ps.1968 [DOI]

Billard A. Laval V. Fillinger S. Leroux P. Lachaise H. Beffa R. (2012). The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA. Appl. Environ. Microbiol. 78 1063–1068. 10.1128/AEM.06957-11 [OpenAIRE] [DOI]

Chatzidimopoulos M. Ganopoulos I. Vellios E. Madesis P. Tsaftaris A. Pappas A. C. (2014). Development of a two-step high-resolution melting (HRM) analysis for screening sequence variants associated with resistance to the QoIs, benzimidazoles and dicarboximides in airborne inoculum of Botrytis cinerea. FEMS Microbiol. Lett. 360 126–131. 10.1111/1574-6968.12594 [DOI]

Cui W. Beever R. E. Parkes S. L. Templeton M. D. (2004). Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94 1129–1135. 10.1094/PHYTO.2004.94.10.1129 [DOI]

Cui W. Beever R. E. Parkes S. L. Weeds P. L. Templeton M. D. (2002). An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet. Biol. 36 187–198. 10.1016/S1087-1845(02)00009-9 [DOI]

De Miccolis A. R. Masiello M. Rotolo C. Pollastro S. Faretra F. (2014). Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea). Pest Manag. Sci. 70 1884–1893. 10.1002/ps.3748 [DOI]

De Miccolis A. R. Rotolo C. Masiello M. Pollastro S. Ishii H. Faretra F. (2012). Genetic analysis and molecular characterisation of laboratory and field mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to QoI fungicides. Pest Manag. Sci. 68 1231–1240. 10.1002/ps.3281 [DOI]

Dean R. Van Kan J. A. Pretorius Z. A. Hammond-Kosack K. E. Di Pietro A. Spanu P. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13 414–430. 10.1111/j.1364-3703.2011.00783.x [DOI]

Debieu D. Bach J. Montesinos E. Fillinger S. Leroux P. (2013). Role of sterol 3-ketoreductase sensitivity in susceptibility to the fungicide fenhexamid in Botrytis cinerea and other phytopathogenic fungi. Pest Manag. Sci. 69 642–651. 10.1002/ps.3418 [OpenAIRE] [DOI]

Dunbar S. A. (2006). Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta 363 71–82. 10.1016/j.cccn.2005.06.023 [DOI]

Dunbar S. A. Jacobson J. W. (2007). Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array. Methods Mol. Biol. 394 1–19. 10.1007/978-1-59745-512-1_1 [DOI]

Fernandez-Ortuno D. Grabke A. Li X. Schnabel G. (2015). Independent emergence of resistance to seven chemical classes of fungicides in Botrytis cinerea. Phytopathology 105 424–432. 10.1094/PHYTO-06-14-0161-R [DOI]

Fillinger S. Ajouz S. Nicot P. C. Leroux P. Bardin M. (2012). Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS ONE 7:e42520. 10.1371/journal.pone.0042520 [OpenAIRE] [DOI]

42 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2016

Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

Xin Zhang; Fei Xie; Baobei Lv; Pengxiang Zhao; Xuemei Ma;