publication . Article . Preprint . Other literature type . 2018

Dark Energy Survey Year 1 results: Cross-correlation redshifts - methods and systematics characterization

C. Lidman; W. G. Hartley; W. G. Hartley; Ting Li; F. Sobreira; J. K. Hoormann; Samuel R. Hinton; B. Flaugher; Kevin Reil; Joshua A. Frieman; ...
Open Access English
  • Published: 22 Feb 2018
Abstract
Comment: submitted to MNRAS
Subjects
arXiv: Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Galaxy Astrophysics
free text keywords: RCUK, STFC, Cosmologia - Observações, Cosmology - Observations, Galaxies distances and redshifts, Astrophysics - Cosmology and Nongalactic Astrophysics, Space and Planetary Science, Astronomy and Astrophysics, Science & Technology, Physical Sciences, Astronomy & Astrophysics, galaxies: distances and redshifts, cosmology: observations, DIGITAL SKY SURVEY, PHOTOMETRIC GALAXY SAMPLES, SCIENCE VERIFICATION DATA, COSMIC SHEAR, RANDOM FORESTS, DATA RELEASE, DEEP FIELD, DISTRIBUTIONS, MAGNIFICATION, LUMINOSITY, Photometry (optics), Redshift, Dark energy, Astronomy, Redshift quantization, Redshift survey, Weak gravitational lensing, Astrophysics, Photometric redshift, Physics, Galaxy
Funded by
NSF| Collaborative Research: The Dark Energy Survey Data Management Operations
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1138766
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Astronomical Sciences
,
EC| COGS
Project
COGS
Capitalizing on Gravitational Shear
  • Funder: European Commission (EC)
  • Project Code: 240672
  • Funding stream: FP7 | SP2 | ERC
,
EC| TESTDE
Project
TESTDE
Testing the Dark Energy Paradigm and Measuring Neutrino Mass with the Dark Energy Survey
  • Funder: European Commission (EC)
  • Project Code: 291329
  • Funding stream: FP7 | SP2 | ERC
,
EC| COSMICDAWN
Project
COSMICDAWN
Understanding the Origin of Cosmic Structure
  • Funder: European Commission (EC)
  • Project Code: 306478
  • Funding stream: FP7 | SP2 | ERC
122 references, page 1 of 9

Aihara H. et al., 2018, PASJ, 70, S8

Alam S. et al., 2015, ApJS, 219, 12

Applegate D. E. et al., 2014, MNRAS, 439, 48

Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291

Becker M. R., 2013, MNRAS, 435, 115

Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, ApJ, 762, 109

Ben´ıtez N., 2000, ApJ, 536, 571

Bezanson R. et al., 2016, ApJ, 822, 30

Blanton M. R., Eisenstein D., Hogg D. W., Zehavi I., 2006, ApJ, 645, 977 Breiman L., 2001, Machine Learning, 45, 5

Carrasco Kind M., Brunner R. J., 2013, MNRAS, 432, 1483

Cawthon R. et al., 2017, MNRAS, preprint (arXiv:1712.07298)

Choi A. et al., 2016, MNRAS, 463, 3737

Coe D., Ben´ıtez N., Sa´nchez S. F., Jee M., Bouwens R., Ford H., 2006, AJ, 132, 926

Coil A. L., Newman J. A., Cooper M. C., Davis M., Faber S. M., Koo D. C., Willmer C. N. A., 2006, ApJ, 644, 671

Coil A. L. et al., 2011, ApJ, 741, 8

122 references, page 1 of 9
Any information missing or wrong?Report an Issue