Homogenized boundary conditions and resonance effects in Faraday cages

Article, Preprint English OPEN
Hewett, D. P.; Hewitt, I. J.;
  • Publisher: ROYAL SOC
  • Journal: Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, volume 472, issue 2,189 (issn: 0080-4630, eissn: 1471-2946)
  • Publisher copyright policies & self-archiving
  • Related identifiers: pmc: PMC4893186, doi: 10.1098/rspa.2016.0062
  • Subject: Mathematical Physics | electromagnetic shielding | 191 | Helmholtz equation | thin periodic interface | homogenized boundary conditions | 1008 | multiple scattering | Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, Helmholtz equation, multiple scattering, electromagnetic shielding, homogenized boundary conditions, thin periodic interface, method of multiple scales, THIN PERIODIC INTERFACES, WAVE-PROPAGATION, SCATTERING, ASYMPTOTICS | 78A40, 31A25, 78M40 | 6 | Mathematics - Analysis of PDEs | method of multiple scales | Research Articles | 63 | 1009
    arxiv: Physics::Atomic and Molecular Clusters

<p>We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage e ect'). Taking the limit as the number of wires in the cage tends to in nity we use the asymptotic method of... View more
  • References (26)
    26 references, page 1 of 3

    1. Faraday M. 1839 Experimental researches in electricity, vol. 1, secs. 1173-4. (Reprinted from Philosophical Transactions of 1831-1838.) London, UK: Richard and John Edward Taylor. (http://www.gutenberg.org/ebooks/14986)

    2. Maxwell JC. 1881 A treatise on electricity and magnetism, vol. 1, secs. 203-205. Oxford, UK: Clarendon Press.

    3. Chapman SJ, Hewett DP, Trefethen LN. 2015 Mathematics of the Faraday cage. SIAM Rev. 57, 398-417. (doi:10.1137/140984452)

    4. Feynman R, Leighton RB, Sands M. 1964 The Feynman lectures on physics, vol. 2: mainly electromagnetism and matter. Reading, MA: Addison-Wesley.

    5. Delourme B. 2010 Modèles et asymptotiques des interface fines et périodiques en èletromagnètisme. PhD thesis, U. Pierre et Marie Curie, France.

    6. Delourme B, Haddar H, Joly P. 2012 Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. 98, 28-71. (doi:10.1016/j.matpur.2012.01.003)

    7. Delourme B, Haddar H, Joly P. 2013 On the well-posedness, stability and accuracy of an asymptotic model for thin periodic interfaces in electromagnetic scattering problems. Math. Mod. Meth. Appl. Sci. 23, 2433-2464. (doi:10.1142/S021820251350036X)

    8. Bruna M, Chapman SJ, Ramon GZ. 2015 The effective flux through a thin-film composite membrane. Europhys. Lett. 110, 40005. (doi:10.1209/0295-5075/110/40005)

    9. Cioranescu D, Murat F. 1997 A strange term coming from nowhere, in Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differ. Equ. Appl. 30, 45-93. (doi:10.1007/978-1-4612-2032-9_4)

    10. Claeys X, Delourme B. 2013 High order asymptotics for wave propagation across thin periodic interfaces. Asymptot. Anal. 83, 35-82. (doi:10.3233/ASY-2012-1150)

  • Related Organizations (5)
  • Metrics
Share - Bookmark