## Expander Graphs in Pure and Applied Mathematics

*Lubotzky, Alexander*;

- Journal: Bulletin of the American Mathematical Society (issn: 0273-0979)
Related identifiers: doi: 10.1090/S0273-0979-2011-01359-3 - Subject: Mathematics - Combinatorics | 01-02

- References (27)
Acad. Sci. Paris 343 (2006), no. 3, 155{159.

J. Bourgain, A. Gamburd and P. Sarnak, A ne linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559{644.

J. Bourgain, A. Gamburd and P. Sarnak, Generalization of Selberg's 3/16 Theorem and A ne Sieve, arXiv:0912.5021 J. Bourgain, N. Katz and T. Tao, A sum-product estimate in nite elds, and applications, Geom. Funct. Anal. 14 (2004), no. 1, 27{57.

J. Bourgain and A. Kontorovich, On representations of integers in thin subgroups of SL(2; Z), Geom. Funct. Anal. (GAFA) 20 (2010), 1144{1174.

139 (2000), no. 1, 41{98.

D. Gaboriau, What is Cost? Notices AMS 57 (2010), 1295{1296.

A. Gamburd, On the spectral gap for in nite index \congruence" subgroups of SL2(Z), Israel J. Math. 127 (2002), 157{200.

A. Gamburd, Expander graphs, random matrices and quantum chaos, Random walks and geometry, 109{140, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

[GHSSV] A. Gamburd, S. Hoory, M. Shahshahani. A. Shalev and B. Virg, On the girth of random Cayley graphs, Random Structures Algorithms 35 (2009), no. 1, 100{117.

A. Gamburd, D. Jakobson and P. Sarnak, Spectra of elements in the group ring of SU(2), J. Eur. Math. Soc. (JEMS) 1 (1999), no. 1, 51{85.

- Metrics No metrics available

- Download from

- Funded by

- Cite this publication