Multiple binomial sums

Article, Preprint English OPEN
Bostan , Alin; Lairez , Pierre; Salvy , Bruno;
(2015)
  • Publisher: Elsevier
  • Related identifiers: doi: 10.1016/j.jsc.2016.04.002
  • Subject: [ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO] | Mathematics - Combinatorics | 05A10 (33F10 68W30) | 05A10, 33F10, 68W30 | Computer Science - Symbolic Computation | symbolic computation | Binomial sum | [ INFO.INFO-SC ] Computer Science [cs]/Symbolic Computation [cs.SC] | multiple sum | diagonal | integral representation

International audience; Multiple binomial sums form a large class of multi-indexed sequences, closed under partial summation, which contains most of the sequences obtained by multiple summation of products of binomial coefficients and also all the sequences with algebra... View more
  • References (40)
    40 references, page 1 of 4

    Abramov, S. A. (2006). “On the summation of P -recursive sequences”. In: Proceedings of the international symposium on symbolic and algebraic computation. ISSAC '06. ACM Press, pp. 17-22. doi: 10.1145/1145768.1145779.

    Abramov, S. A. and M. Petkovˇsek (1994). “D'Alembertian solutions of linear differential and difference equations”. In: Proceedings of the international symposium on symbolic and algebraic computation. ISSAC '94. ACM Press, pp. 169-174. doi: 10.1145/190347.190412.

    - (2002). “On the structure of multivariate hypergeometric terms”. In: Advances in Applied Mathematics 29.3, pp. 386-411. doi: 10.1016/S0196-8858(02)00022-2.

    Abramov, S. A. and M. Petkovˇsek (2005). “Gosper's algorithm, accurate summation, and the discrete Newton-Leibniz formula”. In: Proceedings of the international symposium on symbolic and algebraic computation. ISSAC '05. ACM Press, pp. 5-12. doi: 10.1145/1073884.1073888.

    Allouche, J.-P. and M. Mend`es France (2011). “Hadamard grade of power series”. In: Journal of Number Theory 131.11, pp. 2013-2022. doi: 10.1016/j.jnt.2011.04.011.

    Andrews, G. E. and P. Paule (1993). “Some questions concerning computer-generated proofs of a binomial double-sum identity”. In: Journal of Symbolic Computation 16.2, pp. 147-153. doi: 10.1006/jsco.1993.1038.

    Apagodu, M. and D. Zeilberger (2006). “Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory”. In: Advances in Applied Mathematics 37.2, pp. 139-152. doi: 10.1016/j.aam.2005.09.003.

    Barvinok, A. (2008). Integer points in polyhedra. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zu¨rich. doi: 10.4171/052.

    Blodgett, R. J. (1990). “Problem E3376”. In: American Mathematical Monthly 97.3, p. 240.

    Bostan, A., P. Lairez, and B. Salvy (2013a). “Creative telescoping for rational functions using the Griffiths-Dwork method”. In: Proceedings of the international symposium on symbolic and algebraic computation. ISSAC '13. ACM Press, pp. 93-100. doi: 10.1145/2465506.2465935.

  • Related Research Results (1)
  • Metrics
Share - Bookmark