publication . Article . Preprint . 2015

Filling transitions in acute and open wedges.

Malijevský, A. (Alexandr); Parry, A.O.;
Open Access
  • Published: 26 Feb 2015 Journal: Physical Review E, volume 91 (issn: 1539-3755, eissn: 1550-2376, Copyright policy)
  • Publisher: American Physical Society (APS)
We study bridging transitions between spherically and cylindrically shaped particles (colloids) of radius R separated by a distance H that are dissolved in a bulk fluid (solvent). Using macroscopics, microscopic density-functional theory, and finite-size scaling theory, we study the location and order of the bridging transition and also the stability of the liquid bridges, which determines spinodal lines. The location of the bridging transitions is similar for cylinders and spheres, so that at bulk coexistence, for example, the distance H-b at which a transition between bridged and unbridged configurations occurs is proportional to the colloid radius R. However,...
arXiv: Condensed Matter::Soft Condensed Matter
free text keywords: wetting transitions, wedges, density functional theory, Condensed Matter - Statistical Mechanics, Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Soft Condensed Matter, Science & Technology, Physical Sciences, Physics, Fluids & Plasmas, Physics, Mathematical, Physics, PHASE-EQUILIBRIA, NARROW PORES, FLUIDS, CAPILLARY, BEHAVIOR, Fluids & Plasmas, 01 Mathematical Sciences, 02 Physical Sciences, 09 Engineering
Related Organizations

8 D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009). 9 W. F. Saam, J. Low Temp. Phys. 157, 77 (2009).

10 D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1985). 11 M. Schick, in Liquids and Interfaces, edited by J. Chorvolin, J. F. Joanny, and J. Zinn-Justin (Elsevier, New York, 1990). 12 R. Evans, U. Marini Bettolo Marconi, and P. Tarazona, J. Chem. Phys. 84, 2376 (1986). 13 R. Evans and U. Marini Bettolo Marconi, J. Chem. Phys. 86, 7138 (1987). 14 C. Rascon, A. O. Parry, N. B. Wilding, and R. Evans, Phys. Rev. Lett. 98, 226101 (2007). 15 R. Roth and A. O. Parry, Mol. Phys. 109, 1159 (2011).

16 A. Malijevsky and A. O. Parry, J. Phys.: Condens. Matter 26, 355003 (2014). 17 A. O. Parry, A. Malijevsky, and C. Rascon, Phys. Rev. Lett. 113, 146101 (2014). 18 P. Concus and R. Finn, Proc. Natl Acad. Sci. USA 63, 292 (1969).

19 E. H. Hauge, Phys. Rev. A 46, 4994 (1992).

20 K. Rejmer, S. Dietrich, and M. Napirkowski, Phys. Rev. E 60, 4027 (1999). 21 A. O. Parry, C. Rascon, and A. J. Wood, Phys. Rev. Lett. 83, 5535 (1999). 22 A. O. Parry, C. Rascon, and A. J. Wood, Phys. Rev, Lett. 85, 345 (2000). 23 A. O. Parry, A. J. Wood, and C. Rascon, J. Phys.: Condens. Matter 13, 4591 (2001). 24 D. B. Abraham and Maciolek, Phys. Rev. Lett. 89, 286101 (2002).

25 D. B. Abraham, V. Mustonen, and A. J. Wood 63, 408 (2003).

26 G. Del no and A. Squarcini, Phys. Rev. Lett. 113, 066101 (2014).

27 A. Milchev, M. Muller, K. Binder, and D. P. Landau, Phys. Rev. Lett 90, 136101 (2003); Phys. Rev. E 68, 031601 (2003). 28 M. Muller and K. Binder, J. Phys.: Condens. Matter 17, S333-61 (2005). 29 N. R. Bernardino, A. O. Parry, and J. M. Romero-Enrique, J. Phys.: Condens. Matter 24, 182202 (2011). 30 A. Malijevsky and A. O. Parry, Phys. Rev. Lett. 110, 166101 (2013).

31 A. Malijevsky and A. O. Parry, J. Phys.: Condens. Matter 25, 305005 (2013). 32 Y. Rosenfeld, Phys. Rev. Lett 63, 980 (1989).

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue