Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

Article, Other literature type OPEN
Hesam Mirzaei Rafsanjani; John Dalsgaard Sørensen;
(2015)
  • Publisher: Multidisciplinary Digital Publishing Institute
  • Journal: Energies,volume 8,issue 4 4,pages1-16 (issn: 1996-1073)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.3390/en8042908
  • Subject: wind turbine; drivetrain; fatigue; stochastic model; reliability analysis | wind turbine | drivetrain | Technology | fatigue | reliability analysis | T | stochastic model
    • jel: jel:Q0 | jel:Q | jel:Q4 | jel:Q47 | jel:Q49 | jel:Q48 | jel:Q43 | jel:Q42 | jel:Q41 | jel:Q40

Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure ... View more
  • References (23)
    23 references, page 1 of 3

    1. Hau, E. Wind Turbines: Fundamentals, Technologies, Application, Economics, 2nd ed.; Springer: New York, NY, USA, 2006.

    2. Sheng, S.; Veers, P. Wind turbine drivetrain condition monitoring-an overview. In Proceedings of the Mechanical Failures Prevention Group: Applied Systems Health Management Conference 2011, Virginia Beach, VA, USA, 10−12 May 2011.

    3. Mirzaei Rafsanjani, H.; Sørensen, J.D. Stochastic modeling of wind turbine drivetrain components. In Safety, Reliability and Risk Analysis: Beyond the Horizon; Proceedings of the European Safety and Reliability Conference, Amsterdam, The Netherlands, 29 September-2 October 2013; Steenbergen, R.D.J.M., van Gelder, P.H.A.J.M., Miraglia, S., Vrouwenvelder, A.C.W.M., Eds.; CRC Press LLC: Leiden, The Netherland, 2013; pp. 1221-1228.

    4. Link, H.; LaCava, W.; Van Dam, J.; McNiff, B.; Sheng, S.; Wallen, R.; McDade, M.; Lambert, S.; Butterfield, S.; Oyague, F. Gearbox Reliability Collaborative Project Report: Findings from Phase 1 and Phase 2 Testing; Technical Report NREL/TP-5000-51885; National Renewable Energy Laboratory: Golden, CO, USA, 2011.

    5. Soua, S.; Lieshout, P.V.; Perera, A.; Gan, T.; Bridge, B. Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring. Renew. Energy 2013, 51, 175-181.

    6. Liu, W.Y.; Zhang, W.H.; Han, J.G.; Wang, G.F. A new wind turbine fault diagnosis method based on the local mean decomposition. Renew. Energy 2012, 48, 411-415.

    7. Dong, W.; Xing, Y.; Moan, T.; Gao, Z. Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions. Int. J. Fatigue 2013, 48, 133-146.

    8. Shirani, M.; Härkegård, G. Fatigue life distribution and size effect in ductile cast iron for wind turbine components. Eng. Fail. Anal. 2011, 18, 12-24.

    9. Madsen, H.O.; Krenk, S.; Lind, N.C. Methods of Structural Safety; Prentice-Hall: Englewood Cliff's, NJ, USA, 1986.

    10. Oyague, F. Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-the-Art Simulation Codes; Technical Report NREL/TP-500-41160; National Renewable Energy Laboratory: Golden, CO, USA, 2011.

  • Related Organizations (1)
  • Metrics
Share - Bookmark