Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies

Article English OPEN
Beattie, Shane D. ; Loveridge, M.J. ; Lain, Michael J. ; Ferrari, Stefania ; Polzin, Bryant J. ; Bhagat, Rohit ; Dashwood, Richard (2016)
  • Publisher: Elsevier BV
  • Journal: Journal of Power Sources, volume 302, pages 426-430 (issn: 0378-7753)
  • Related identifiers: doi: 10.1016/j.jpowsour.2015.10.066, doi: 10.1016/j.jpowsour.2015.10.06
  • Subject: QD | Physical and Theoretical Chemistry | Energy Engineering and Power Technology | Renewable Energy, Sustainability and the Environment | TK | Electrical and Electronic Engineering

Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/ NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Liþ). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.
  • References (19)
    19 references, page 1 of 2

    [1] M. Obrovac, L. Krause, J. Electrochem. Soc. 154 (2007) A103eA108.

    [2] D. Mazouzi, Z. Karkar, C. Reale Hernandez, P. Jimenez Manero, D. Guyomard, L. Roue, B. Lestriez, J. Power Sources 280 (2015) 533e549.

    [3] G. Talla, R.K. Guduru, B.Q. Li, P.S. Mohanty, Solid State Ionics 269 (2015) 8e13.

    [4] M. Ling, Y. Xu, H. Zhao, X. Gu, J. Qiu, S. Li, M. Wu, X. Song, C. Yan, G. Liu, S. Zhang, Nano Energy 12 (2015) 178e185.

    [5] B.P.N. Nguyen, S. Chazelle, M. Cerbelaud, W. Porcher, B. Lestriez, J. Power Sources 262 (2014) 112e122.

    [6] E. Radvanyi, W. Porcher, E. De Vito, A. Montani, S. Franger, S. Jouanneau Si Larbi, Phys. Chem. Chem. Phys. 16 (2014) 17142e17153.

    [7] D. Mazouzi, B. Lestriez, L. Roue, D. Guyomard, Electrochem. Solid-State Lett. 12 (2009) A215eA218.

    [8] Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, D. Guyomard, J. Mater. Chem. 21 (2011) 6201e6208.

    [9] J. Li, J. Dahn, J. Electrochem. Soc. 154 (2007) A156eA161.

    [10] T. Hatchard, J. Dahn, J. Electrochem. Soc. 151 (2004) A838eA842.

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    83
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Warwick Research Archives Portal Repository - IRUS-UK 0 83
Share - Bookmark