publication . Conference object . Article . Preprint . 2018

Multi-Channel Stochastic Variational Inference for the Joint Analysis of Heterogeneous Biomedical Data in Alzheimer's Disease

Antelmi, Luigi; Ayache, Nicholas; Robert, Philippe; Lorenzi, Marco;
Open Access English
  • Published: 10 Aug 2018
  • Publisher: HAL CCSD
Comment: accepted for presentation at MLCN 2018 workshop, in Conjunction with MICCAI 2018, September 20, Granada, Spain
free text keywords: [STAT.ME]Statistics [stat]/Methodology [stat.ME], [STAT.AP]Statistics [stat]/Applications [stat.AP], [STAT.ML]Statistics [stat]/Machine Learning [stat.ML], [STAT.OT]Statistics [stat]/Other Statistics [stat.ML], Statistics - Methodology
Related Organizations
Funded by
NIH| Alzheimers Disease Neuroimaging Initiative
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1U01AG024904-01
  • Funder: Canadian Institutes of Health Research (CIHR)

[1] Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep Canonical Correlation Analysis. Proc. Mach. Learn. Res. 28(3), 1247-1255 (2013)

[2] Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational Inference: A Review for Statisticians (2016),

[3] Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., et al.: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet. Neurol. 13(6), 614-29 (jun 2014)

[4] Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D., et al.: On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96-110 (2014)

[5] Hotelling, H.: Relations Between Two Sets of Variates. Biometrika 28(3/4), 321 (dec 1936) [OpenAIRE]

[6] Huang, S.Y., Lee, M.H., Hsiao, C.K.: Nonlinear measures of association with kernel canonical correlation analysis and applications. J. Stat. Plan. Inference 139(7), 2162-2174 (2009)

[7] Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., et al.: NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimer's Dement. 14(4), 535-562 (2018) [OpenAIRE]

[8] Kettenring, J.R.: Canonical analysis of several sets of variables. Biometrika 58(3), 433-451 (1971)

[9] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR abs/1412.6 (2014),

[10] Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: Proc. 2nd Int. Conf. Learn. Represent. (ICLR2014). (dec 2014),

[11] Klami, A., Seppo, V., Kaski, S.: Bayesian Canonical Correlation Analysis. J. Mach. Learn. Res. 14, 965-1003 (2013)

[12] Liu, J., Calhoun, V.D.: A review of multivariate analyses in imaging genetics. Front. Neuroinform. 8, 29 (mar 2014)

[13] Luo, Y., Tao, D., Ramamohanarao, K., Xu, C., Wen, Y.: Tensor Canonical Correlation Analysis for Multi-View Dimension Reduction. IEEE Trans. Knowl. Data Eng. 27(11), 3111-3124 (2015)

[14] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., et al.: Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. Neuroimage 15(1), 273-289 (jan 2002)

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue