publication . Article . Preprint . 2015

Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

Chefdeville, M.; Karyotakis, Y.; Apostolakis, J.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; ...
Open Access English
  • Published: 01 Jan 2015
  • Publisher: HAL CCSD
Abstract
Comment: 35 pages, 21 figures, 8 tables
Subjects
arXiv: Nuclear ExperimentHigh Energy Physics::ExperimentPhysics::Instrumentation and DetectorsPhysics::Accelerator PhysicsAstrophysics::High Energy Astrophysical Phenomena
free text keywords: [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], Detectors and Experimental Techniques, Improvement and equipment of irradiation and test beam lines [8], Coordination of combined beam tests and common DAQ [8.6], Physics - Instrumentation and Detectors, High Energy Physics - Experiment, ddc:610
Funded by
EC| AIDA
Project
AIDA
Advanced European Infrastructures for Detectors at Accelerators
  • Funder: European Commission (EC)
  • Project Code: 262025
  • Funding stream: FP7 | SP4 | INFRA
Communities
EGI FederationEGI virtual organizations: calice

[1] M. A. Thomson. Particle Flow Calorimetry and the PandoraPFA Algorithm. Nucl. Instrum. Meth., vol. A611 p. 25, 2009. doi:10.1016/j.nima.2009.09.009.

[2] J. Marshall, A. Münnich, and M. Thomson. Performance of Particle Flow Calorimetry at CLIC. Nucl. Instrum. Meth., vol. A 700 p. 153, 2013. doi:10.1016/j.nima.2012.10.038.

[3] L. Linssen, A. Miyamoto, M. Stanitzki, and H. Weerts. Physics and Detectors at CLIC: CLIC Conceptual Design Report. 2012. ANL-HEP-TR-12-01, CERN-2012-003, DESY 12-008, KEK Report 2011-7. CERN-2012-003.

[10] P. Coet and N. Doble. An Introduction to the Design of High-Energy Charged Particle Beams. Tech. rep., CERN, Geneva, 1986. CERN-SPS-86-23-EBS. [OpenAIRE]

[11] J. Spanggaard. Delay wire chambers - a users guide. CERN, 1998. SL-Note-98-023-BI. [OpenAIRE]

[12] C. Adloff et al. Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten HCAL. JINST, vol. 9 p. P01004, 2014. doi:10.1088/1748-0221/9/01/P01004. [OpenAIRE]

[13] C. Adloff et al. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter. JINST, vol. 8 p. P09001, 2013. doi:10.1088/1748-0221/8/09/P09001. [OpenAIRE]

[14] C. Adloff et al. Electromagnetic response of a highly granular hadronic calorimeter. JINST, vol. 6 p. P04003, 2011. doi:10.1088/1748-0221/6/04/P04003. [OpenAIRE]

[15] D. Dannheim, W. Klempt and A. Lucaci-Timoce. Temperature studies of the CALICE W-HCAL with CERN 2010 data, 2011. LCD-Note-2011-001. [OpenAIRE]

[16] D. Dannheim, K. Elsener, W. Klempt, A. Lucaci-Timoce, E. van der Kraaij. Particle identification with Cherenkov detectors in the 2011 CALICE tungsten analog hadronic calorimeter test beam at the CERN SPS, 2013. LCD-Note-2013-006. [OpenAIRE]

[17] B. Lutz. Hadron showers in a highly granular calorimeter. Ph.D. thesis, University of Hamburg, 2010. DESY-THESIS-10-048.

[18] C. Adloff et al. Validation of Geant4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter. JINST, vol. 8 p. 07005, 2013. doi:10.1088/1748-0221/8/07/P07005. [OpenAIRE]

[19] C. Adloff et al. The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers. JINST, vol. 9 p. P07022, 2014. doi:10.1088/1748-0221/9/07/P07022. [OpenAIRE]

[20] J. B. Birks. Scintillations from Organic Crystals: Specific Fluorescence and Relative Response to Different Radiations . Proc. Phys. Soc., vol. A 64, 1951. doi:10.1088/0370-1298/64/10/303. [OpenAIRE]

[21] C. Günter. Comparison of Iron and Tungsten Absorber Structures for an Analog Hadron Calorimeter. Ph.D. thesis, University of Hamburg, 2015. DESY-THESIS-15-018.

Any information missing or wrong?Report an Issue