publication . Preprint . Other literature type . Article . 2018

The 10−3 eV frontier in neutrinoless double beta decay

J.T. Penedo; S.T. Petcov;
Open Access English
  • Published: 01 Nov 2018
  • Country: Italy
Abstract
The observation of neutrinoless double beta decay would allow to establish lepton number violation and the Majorana nature of neutrinos. The rate of this process in the case of 3-neutrino mixing is controlled by the neutrinoless double beta decay effective Majorana mass $|\langle m \rangle|$. For a neutrino mass spectrum with normal ordering, which is favoured over the spectrum with inverted ordering by recent global fits, $|\langle m \rangle|$ can be significantly suppressed. Taking into account updated data on the neutrino oscillation parameters, we investigate the conditions under which $|\langle m \rangle|$ in the case of spectrum with normal ordering exceed...
Subjects
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::ExperimentHigh Energy Physics::Lattice
free text keywords: High Energy Physics - Phenomenology, QC1-999, Majorana neutrinos; Neutrino physics; Neutrinoless double beta decay; Normal ordering, Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici, Flavour, Neutrino oscillation, MAJORANA, Double beta decay, Physics, Particle physics, Lepton number, CP violation, Mass spectrum, Neutrino
Funded by
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
39 references, page 1 of 3

[1] C. Patrignani, et al., Particle Data Group, Review of particle physics, Chin. Phys. C 40 (10) (2016) 100001, https://doi.org/10.1088/1674-1137/40/10/100001, and 2017 update.

[2] S.M. Bilenky, J. Hosek, S.T. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495-498, https://doi.org/10.1016/ 0370-2693(80)90927-2. [OpenAIRE]

[3] P. Langacker, S.T. Petcov, G. Steigman, S. Toshev, On the Mikheev-SmirnovWolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, Nucl. Phys. B 282 (1987) 589-609, https://doi.org/10.1016/0550- 3213(87)90699-7. [OpenAIRE]

[4] J.D. Vergados, H. Ejiri, F. Šimkovic, Neutrinoless double beta decay and neutrino mass, Int. J. Mod. Phys. E 25 (11) (2016) 1630007, https://doi.org/10.1142/ S0218301316300071, arXiv:1612.02924. [OpenAIRE]

[5] S. Dell'Oro, S. Marcocci, M. Viel, F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659, https://doi.org/10. 1155/2016/2162659, arXiv:1601.07512. [OpenAIRE]

[6] A.S. Barabash, Double beta decay: historical review of 75 years of research, Phys. At. Nucl. 74 (2011) 603-613, https://doi.org/10.1134/ S1063778811030070, arXiv:1104.2714.

[7] M. Agostini, et al., Improved limit on neutrinoless double-β decay of 76Ge from GERDA phase II, Phys. Rev. Lett. 120 (13) (2018) 132503, https://doi.org/10. 1103/PhysRevLett.120.132503, arXiv:1803.11100.

[8] C. Alduino, et al., First results from CUORE: a search for lepton number violation via 0νββ decay of 130Te, Phys. Rev. Lett. 120 (13) (2018) 132501, https:// doi.org/10.1103/PhysRevLett.120.132501, arXiv:1710.07988. [OpenAIRE]

[9] A. Gando, et al., Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117 (8) (2016) 082503, https://doi.org/10.1103/PhysRevLett.117.109903, arXiv:1605.02889; Addendum: Phys. Rev. Lett. 117 (10) (2016) 109903, https://doi.org/10.1103/PhysRevLett. 117.082503.

[10] S. Pascoli, S.T. Petcov, The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum, Phys. Lett. B 544 (2002) 239-250, https:// doi.org/10.1016/S0370-2693(02)02510-8, arXiv:hep-ph/0205022. [OpenAIRE]

[11] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (9) (2017) 096014, https://doi.org/10.1103/PhysRevD.95.096014, arXiv:1703.04471.

[12] I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, J. High Energy Phys. 01 (2017) 087; and NuFIT 3.2, www.nu-fit.org, arXiv:1611.01514, https://doi.org/10.1007/JHEP01(2017)087, 2018.

[13] F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Current unknowns in the three neutrino framework, arXiv:1804.09678.

[14] S. Pascoli, S.T. Petcov, Majorana neutrinos, neutrino mass spectrum and the | m | ∼ 10−3 eV frontier in neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113003, https://doi.org/10.1103/PhysRevD.77.113003, arXiv:0711.4993. [OpenAIRE]

[15] F. Iachello, J. Kotila, J. Barea, Quenching of g A and its impact in double beta decay, PoS NEUTEL2015 (2015) 047. [OpenAIRE]

39 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue